Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

pls convert it into c++ Algorithm TopologicalSort(G) G is a directed graph. L =

ID: 3861839 • Letter: P

Question

pls convert it into c++

Algorithm TopologicalSort(G) G is a directed graph.

L = Empty list that will contain the result of the topological sort
H = heap of quests (compared by experience value) whose corresponding

nodes in G have no incoming edges,

while H is non-empty do
remove a quest n from H
add quest n to the end of the list L
for each graph node m such that there is an edge e from n’s graph node to m

remove edge e from the graph
if m now has no incoming edges then

insert m’s quest into H

if the graph has any edges in it then
throw exception (the graph had at least one cycle!!!)

else
return L (a topologically sorted order)

do

Explanation / Answer

// A C++ program to print topological sorting of a graph

// using indegrees.

#include<bits/stdc++.h>

using namespace std;

// Class to represent a graph

class Graph

{

    int V;    // No. of vertices'

    // Pointer to an array containing adjacency listsList

    list<int> *adj;

public:

    Graph(int V);   // Constructor

    // function to add an edge to graph

    void addEdge(int u, int v);

    // prints a Topological Sort of the complete graph

    void topologicalSort();

};

Graph::Graph(int V)

{

    this->V = V;

    adj = new list<int>[V];

}

void Graph::addEdge(int u, int v)

{

    adj[u].push_back(v);

}

// The function to do Topological Sort.

void Graph::topologicalSort()

{

    // Create a vector to store indegrees of all

    // vertices. Initialize all indegrees as 0.

    vector<int> in_degree(V, 0);

    // Traverse adjacency lists to fill indegrees of

    // vertices. This step takes O(V+E) time

    for (int u=0; u<V; u++)

    {

        list<int>::iterator itr;

        for (itr = adj[u].begin(); itr != adj[u].end(); itr++)

             in_degree[*itr]++;

    }

    // Create an queue and enqueue all vertices with

    // indegree 0

    queue<int> q;

    for (int i = 0; i < V; i++)

        if (in_degree[i] == 0)

            q.push(i);

    // Initialize count of visited vertices

    int cnt = 0;

    // Create a vector to store result (A topological

    // ordering of the vertices)

    vector <int> top_order;

    // One by one dequeue vertices from queue and enqueue

    // adjacents if indegree of adjacent becomes 0

    while (!q.empty())

    {

        // Extract front of queue (or perform dequeue)

        // and add it to topological order

        int u = q.front();

        q.pop();

        top_order.push_back(u);

        // Iterate through all its neighbouring nodes

        // of dequeued node u and decrease their in-degree

        // by 1

        list<int>::iterator itr;

        for (itr = adj[u].begin(); itr != adj[u].end(); itr++)

            // If in-degree becomes zero, add it to queue

            if (--in_degree[*itr] == 0)

                q.push(*itr);

        cnt++;

    }

    // Check if there was a cycle

    if (cnt != V)

    {

        cout << "There exists a cycle in the graph ";

        return;

    }

    // Print topological order

    for (int i=0; i<top_order.size(); i++)

        cout << top_order[i] << " ";

    cout << endl;

}

// Driver program to test above functions

int main()

{

    // Create a graph given in the above diagram

    Graph g(6);

    g.addEdge(5, 2);

    g.addEdge(5, 0);

    g.addEdge(4, 0);

    g.addEdge(4, 1);

    g.addEdge(2, 3);

    g.addEdge(3, 1);

    cout << "Following is a Topological Sort of ";

    g.topologicalSort();

    return 0;

}

//Output:

// A C++ program to print topological sorting of a graph

// using indegrees.

#include<bits/stdc++.h>

using namespace std;

// Class to represent a graph

class Graph

{

    int V;    // No. of vertices'

    // Pointer to an array containing adjacency listsList

    list<int> *adj;

public:

    Graph(int V);   // Constructor

    // function to add an edge to graph

    void addEdge(int u, int v);

    // prints a Topological Sort of the complete graph

    void topologicalSort();

};

Graph::Graph(int V)

{

    this->V = V;

    adj = new list<int>[V];

}

void Graph::addEdge(int u, int v)

{

    adj[u].push_back(v);

}

// The function to do Topological Sort.

void Graph::topologicalSort()

{

    // Create a vector to store indegrees of all

    // vertices. Initialize all indegrees as 0.

    vector<int> in_degree(V, 0);

    // Traverse adjacency lists to fill indegrees of

    // vertices. This step takes O(V+E) time

    for (int u=0; u<V; u++)

    {

        list<int>::iterator itr;

        for (itr = adj[u].begin(); itr != adj[u].end(); itr++)

             in_degree[*itr]++;

    }

    // Create an queue and enqueue all vertices with

    // indegree 0

    queue<int> q;

    for (int i = 0; i < V; i++)

        if (in_degree[i] == 0)

            q.push(i);

    // Initialize count of visited vertices

    int cnt = 0;

    // Create a vector to store result (A topological

    // ordering of the vertices)

    vector <int> top_order;

    // One by one dequeue vertices from queue and enqueue

    // adjacents if indegree of adjacent becomes 0

    while (!q.empty())

    {

        // Extract front of queue (or perform dequeue)

        // and add it to topological order

        int u = q.front();

        q.pop();

        top_order.push_back(u);

        // Iterate through all its neighbouring nodes

        // of dequeued node u and decrease their in-degree

        // by 1

        list<int>::iterator itr;

        for (itr = adj[u].begin(); itr != adj[u].end(); itr++)

            // If in-degree becomes zero, add it to queue

            if (--in_degree[*itr] == 0)

                q.push(*itr);

        cnt++;

    }

    // Check if there was a cycle

    if (cnt != V)

    {

        cout << "There exists a cycle in the graph ";

        return;

    }

    // Print topological order

    for (int i=0; i<top_order.size(); i++)

        cout << top_order[i] << " ";

    cout << endl;

}

// Driver program to test above functions

int main()

{

    // Create a graph given in the above diagram

    Graph g(6);

    g.addEdge(5, 2);

    g.addEdge(5, 0);

    g.addEdge(4, 0);

    g.addEdge(4, 1);

    g.addEdge(2, 3);

    g.addEdge(3, 1);

    cout << "Following is a Topological Sort of ";

    g.topologicalSort();

    return 0;

}

//Output:

  Following is a Topological Sort  4 5 2 0 3 1