Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A subsequence is a sequence that can be derived from another sequence by deletin

ID: 3854648 • Letter: A

Question

A subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements; e.g. “acef” is a subsequence of “abcdef.” Consider the problem of finding the longest common subsequence of two sequences – this is a task versioning systems like git or cvs often solve. Show that this is a special case of the sequence alignment problem. Then, give a polynomial-time algorithm for finding the longest subsequence common to three sequences. Analyze its running time and argue why it is correct.

Explanation / Answer

/* Dynamic Programming C/C++ implementation of LCS problem For Two Strings */

#include<bits/stdc++.h>

int max(int a, int b);

  

/* Returns length of LCS for X[0..m-1], Y[0..n-1] */

int lcs( char *X, char *Y, int m, int n )

{

   int L[m+1][n+1];

   int i, j;

  

   /* Following steps build L[m+1][n+1] in bottom up fashion. Note

      that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */

   for (i=0; i<=m; i++)

   {

     for (j=0; j<=n; j++)

     {

       if (i == 0 || j == 0)

         L[i][j] = 0;

  

       else if (X[i-1] == Y[j-1])

         L[i][j] = L[i-1][j-1] + 1;

  

       else

         L[i][j] = max(L[i-1][j], L[i][j-1]);

     }

   }

    

   /* L[m][n] contains length of LCS for X[0..n-1] and Y[0..m-1] */

   return L[m][n];

}

  

/* Utility function to get max of 2 integers */

int max(int a, int b)

{

    return (a > b)? a : b;

}

  

/* Driver program to test above function */

int main()

{

  char X[] = "AGGTAB";

  char Y[] = "GXTXAYB";

  

  int m = strlen(X);

  int n = strlen(Y);

  

  printf("Length of LCS is %d ", lcs( X, Y, m, n ) );

  return 0;

}


Time Complexity of the above implementation is O(mn).

Let dp[i, j, k] = longest common subsequence of prefixes A[1..i], B[1..j], C[1..k]

We have:

Complexity is O(len A * len B * len C).

/* Dynamic Programming C/C++ implementation of LCS problem For Two Strings */

#include<bits/stdc++.h>

int max(int a, int b);

  

/* Returns length of LCS for X[0..m-1], Y[0..n-1] */

int lcs( char *X, char *Y, int m, int n )

{

   int L[m+1][n+1];

   int i, j;

  

   /* Following steps build L[m+1][n+1] in bottom up fashion. Note

      that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */

   for (i=0; i<=m; i++)

   {

     for (j=0; j<=n; j++)

     {

       if (i == 0 || j == 0)

         L[i][j] = 0;

  

       else if (X[i-1] == Y[j-1])

         L[i][j] = L[i-1][j-1] + 1;

  

       else

         L[i][j] = max(L[i-1][j], L[i][j-1]);

     }

   }

    

   /* L[m][n] contains length of LCS for X[0..n-1] and Y[0..m-1] */

   return L[m][n];

}

  

/* Utility function to get max of 2 integers */

int max(int a, int b)

{

    return (a > b)? a : b;

}

  

/* Driver program to test above function */

int main()

{

  char X[] = "AGGTAB";

  char Y[] = "GXTXAYB";

  

  int m = strlen(X);

  int n = strlen(Y);

  

  printf("Length of LCS is %d ", lcs( X, Y, m, n ) );

  return 0;

}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote