Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Using python, write code for problem. The text file DOW.txt is used in this prob

ID: 3846614 • Letter: U

Question

Using python, write code for problem. The text file DOW.txt is used in this problem and i have put screenshot of contents of the file. Please also put screenshot of your code.

In Exercises 7 through 10, use the file Dow .txt that contains the name, symbol, exchange, industry, price at the end of trading on 12/31/2012, price at the end of trading on 12/31/2013, 2013 earnings per share, and the dividend paid in 2013 for each of the 30 stocks in the Dow Jones Industrial Average. The first three lines of the file are American Express, AXP,NYSE ,Consumer finance,57.48,90.73,4. 88, 89 Boeing ,BA,NYSE,Aerospace & Defense, 75.36,136.49,5.96,2.19 Caterpillar,CAT,NYSE Construction & Mining Equipment, 89. 61,90.81, 5.75,2.32 7. DOW Write a program that displays the symbols for the 30 DOW stocks in alpha- betical order. When the user enters one of the symbols, the information shown in Fig. 5.13 should be displayed. The Price/Earnings ratio should be calculated as the price of a share of stock on 12/31/2013 divided by the 2013 earnings per share.

Explanation / Answer

Python Code for the problem is like :

print ("Symbols of the thirty DOW Stocks")
dict = {'Name':'American Express','Symbol':'AXP','Exchange':'NYSE','Industry':'Consumer finance','PriceEnd':'57.48','PriceEndo':'90.73','EarningShare':'4.88','Dividend':'0.89'}
print (dict['Symbol'])
dict1 = {'Name':'Boeing','Symbol':'BA','Exchange':'NYSE','Industry':'Aerospace & Defence','PriceEnd':'75.36','PriceEndo':'136.49','EarningShare':'5.96','Dividend':'2.19'}
print (dict1['Symbol'])
dict2 = {'Name':'Caterpillar','Symbol':'CAT','Exchange':'NYSE','Industry':'Construction @ Mining Equipment','PriceEnd':'89.61','PriceEndo':'90.81','EarningShare':'5.75','Dividend':'2.32'}
print (dict2['Symbol'])
dict3 = {'Name':'Cisco System','Symbol':'CSCQ','Exchange':'NASDAQ','Industry':'Computer Networking','PriceEnd':'19.65','PriceEndo':'22.43','EarningShare':'1.49','Dividend':'0.72'}
print (dict3['Symbol'])
dict4 = {'Name':'Chevron Corporation','Symbol':'CVX','Exchange':'NYSE','Industry':'Oil & Gas','PriceEnd':'108.14','PriceEndo':'124.91','EarningShare':'11.09','Dividend':'4'}
print (dict4['Symbol'])
dict5 = {'Name':'DuPont','Symbol':'DD','Exchange':'NYSE','Industry':'Chemical Industry','PriceEnd':'44.98','PriceEndo':'64.97','EarningShare':'5.18','Dividend':'1.8'}
print (dict5['Symbol'])
dict6 = {'Name':'Walt Disney','Symbol':'DIS','Exchange':'NYSE','Industry':'Broadcasting & Entertainment','PriceEnd':'49.74','PriceEndo':'76.4','EarningShare':'3.38','Dividend':'0.75'}
print (dict6['Symbol'])
dict7 = {'Name':'General electric','Symbol':'GE','Exchange':'NYSE','Industry':'Conglomereate','PriceEnd':'20.99','PriceEndo':'28.03','EarningShare':'1.27','Dividend':'0.79'}
print (dict7['Symbol'])
dict8 = {'Name':'Goldman Sachs','Symbol':'GS','Exchange':'NYSE','Industry':'Banking','PriceEnd':'176.96','PriceEndo':'177.26','EarningShare':'15.96','Dividend':'2.05'}
print (dict8['Symbol'])
dict9 = {'Name':'The Home Depot','Symbol':'HD','Exchange':'NYSE','Industry':'Home Improvement retailer','PriceEnd':'61.85','PriceEndo':'61.85','EarningShare':'3.76','Dividend':'1.64'}
print (dict9['Symbol'])
dict10 = {'Name':'International Buisness Machine','Symbol':'IBM','Exchange':'NYSE','Industry':'Computers & Technology','PriceEnd':'191.55','PriceEndo':'187.57','EarningShare':'14.34','Dividend':'3.8'}
print (dict10['Symbol'])
dict11 = {'Name':'Intel','Symbol':'INTC','Exchange':'NASDAQ','Industry':'Semiconductors','PriceEnd':'20.62','PriceEndo':'25.95','EarningShare':'1.89','Dividend':'0.9'}
print (dict11['Symbol'])
dict12 = {'Name':'Jhonson & Jhonson','Symbol':'JNJ','Exchange':'NYSE','Industry':'Pharmaceuticals','PriceEnd':'70.1','PriceEndo':'91.59','EarningShare':'4.81','Dividend':'2.59'}
print (dict12['Symbol'])
dict13 = {'Name':'JPMorgan Chase','Symbol':'JPM','Exchange':'NYSE','Industry':'Banking','PriceEnd':'43.97','PriceEndo':'58.48','EarningShare':'4.35','Dividend':'1.44'}
print (dict13['Symbol'])
dict14 = {'Name':'Coca-Cola','Symbol':'KO','Exchange':'NYSE','Industry':'Beverages','PriceEnd':'36.25','PriceEndo':'41.31','EarningShare':'1.9','Dividend':'1.12'}
print (dict14['Symbol'])
dict15 = {'Name':'McDonalds','Symbol':'MCD','Exchange':'NYSE','Industry':'Fast Food','PriceEnd':'88.21','PriceEndo':'97.03','EarningShare':'5.55','Dividend':'3.12'}
print (dict15['Symbol'])
dict16 = {'Name':'3M','Symbol':'MMM','Exchange':'NYSE','Industry':'Congolemerate','PriceEnd':'92.85','PriceEndo':'140.25','EarningShare':'6.72','Dividend':'2.76'}
print (dict16['Symbol'])
dict17 = {'Name':'Merck','Symbol':'MRK','Exchange':'NYSE','Industry':'Pharmaceuticals','PriceEnd':'40.94','PriceEndo':'50.05','EarningShare':'1.47','Dividend':'1.73'}
print (dict17['Symbol'])
dict18 = {'Name':'Microsoft','Symbol':'MSFT','Exchange':'NASDAQ','Industry':'Software','PriceEnd':'26.71','PriceEndo':'37.41','EarningShare':'2.63','Dividend':'1.07'}
print (dict18['Symbol'])
dict19 = {'Name':'Nike','Symbol':'NKE','Exchange':'NYSE','Industry':'Consumer Goods','PriceEnd':'78.7','PriceEndo':'78.64','EarningShare':'2.97','Dividend':'0.93'}
print (dict19['Symbol'])
dict20 = {'Name':'Pfizer','Symbol':'PFE','Exchange':'NYSE','Industry':'Pharmaceuticals','PriceEnd':'25.08','PriceEndo':'30.63','EarningShare':'3.19','Dividend':'0.98'}
print (dict20['Symbol'])
dict21 = {'Name':'Procter & Gamble','Symbol':'PG','Exchange':'NYSE','Industry':'Consumer goods','PriceEnd':'67.89','PriceEndo':'81.41','EarningShare':'4.01','Dividend':'2.49'}
print (dict21['Symbol'])
dict22 = {'Name':'AT&T','Symbol':'T','Exchange':'NYSE','Industry':'Telecommunication','PriceEnd':'33.71','PriceEndo':'35.16','EarningShare':'3.39','Dividend':'1.81'}
print (dict22['Symbol'])
dict23 = {'Name':'Travelers','Symbol':'TRV','Exchange':'NYSE','Industry':'Insurance','PriceEnd':'71.82','PriceEndo':'90.54','EarningShare':'9.74','Dividend':'1.96'}
print (dict23['Symbol'])
dict24 = {'Name':'United Health Group','Symbol':'UNH','Exchange':'NYSE','Industry':'Managed Health Care','PriceEnd':'54.24','PriceEndo':'75.3','EarningShare':'5.5','Dividend':'1.052'}
print (dict24['Symbol'])
dict25 = {'Name':'United Technologies Corp.','Symbol':'UYX','Exchange':'NYSE','Industry':'Conglomerate','PriceEnd':'82.01','PriceEndo':'113.8','EarningShare':'6.25','Dividend':'2.25'}
print (dict25['Symbol'])
dict27 = {'Name':'Visa','Symbol':'V','Exchange':'NYSE','Industry':'Consumer Finance','PriceEnd':'222','PriceEndo':'222.68','EarningShare':'7.59','Dividend':'1.39'}
print (dict27['Symbol'])
dict26 = {'Name':'Verizon','Symbol':'VZ','Exchange':'NYSE','Industry':'Telecommunication','PriceEnd':'43.27','PriceEndo':'49.14','EarningShare':'4','Dividend':'2.06'}
print (dict26['Symbol'])
dict28 = {'Name':'WalMart','Symbol':'WMT','Exchange':'NYSE','Industry':'Retail','PriceEnd':'68.23','PriceEndo':'78.69','EarningShare':'4.88','Dividend':'0.47'}
print (dict28['Symbol'])
dict29 = {'Name':'ExxonMobil','Symbol':'XOM','Exchange':'NYSE','Industry':'Oil & Gas','PriceEnd':'86.55','PriceEndo':'101.2','EarningShare':'7.37','Dividend':'2.52'}
print (dict29['Symbol'])

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote