Fill blanks of the following code segment that simulate rolling two six-sided di
ID: 3841799 • Letter: F
Question
Fill blanks of the following code segment that simulate rolling two six-sided dice and getting the sum using discrete() method of StdRandom class on page 226 of the textbook. [5 points]
This is a java program
int sum, eye1, eye2;
____________ p = _________________;
for (int i=0; i<6; i++)
_____________________
eye1 = ________________________;
eye2 = ________________________;
sum = eye1 + eye2
this is StdRandom program from p.226
the question comes from Introduction to Programming in Java
This is the book website: http://introcs.cs.princeton.edu/java/home/
this is StdRandom program from p.226
public class StdRandom
{
public static int uniform(int N)
{return (int)(Math.random()*N);}
public static double uniform(double lo, double hi)
{return lo +Math.random()*(hi-lo);}
public static boolean bernoulli(double p)
{return Math.random()<p;}
public static double gaussian() {
double r, x, y;
do {
x = uniform(-1.0, 1.0);
y = uniform(-1.0, 1.0);
r = x*x + y*y;
} while (r >= 1 || r == 0);
return x * Math.sqrt(-2 * Math.log(r) / r);
}
public static double gaussian(double m, double s)
{return m+s*gaussian();}
public static int discrete(double[] a){
double r =uniform(0.0,1.0);
double sum=0.0;
for(int i=0; i<a.length; i++)
{
sum+=a[i];
if(sum>r)return i;
}
return a.length-1;
}
public static void main(String[] args)
{
int N=Integer.parseInt(args[0]);
double[]t={.5,.3,.1,.1};
for(int i=0; i<N; i++)
{
StdOut.printf(" %2d " , uniform(100));
StdOut.printf("%8.5f " , uniform(10.0, 99.0));
StdOut.printf("%5b " , bernoulli(.5));
StdOut.printf("%7.5f ", gaussian(9.0,.2));
StdOut.printf("%2d ", discrete(t));
StdOut.println();
}
}
Explanation / Answer
int sum,eye1,eye2;
dice p= new PairOfDice();
for(int i=0;i<6;i++)
sum count=0;
eye1 = (int)(Math.random()*6) + 1;
eye2 = (int)(Math.random()*6) + 1;
sum = eye1+eye2;
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.