// tree.java // demonstrates binary tree // to run this program: C>java TreeApp
ID: 3807159 • Letter: #
Question
// tree.java
// demonstrates binary tree
// to run this program: C>java TreeApp
import java.io.*;
import java.util.*; // for Stack class
////////////////////////////////////////////////////////////////
class Node
{
public int iData; // data item (key)
public double dData; // data item
public Node leftChild; // this node's left child
public Node rightChild; // this node's right child
public void displayNode() // display ourself
{
System.out.print('{');
System.out.print(iData);
System.out.print(", ");
System.out.print(dData);
System.out.print("} ");
}
} // end class Node
////////////////////////////////////////////////////////////////
class Tree
{
private Node root; // first node of tree
// -------------------------------------------------------------
public Tree() // constructor
{ root = null; } // no nodes in tree yet
// -------------------------------------------------------------
public Node find(int key) // find node with given key
{ // (assumes non-empty tree)
Node current = root; // start at root
while(current.iData != key) // while no match,
{
if(key < current.iData) // go left?
current = current.leftChild;
else // or go right?
current = current.rightChild;
if(current == null) // if no child,
return null; // didn't find it
}
return current; // found it
} // end find()
// -------------------------------------------------------------
public void insert(int id, double dd)
{
Node newNode = new Node(); // make new node
newNode.iData = id; // insert data
newNode.dData = dd;
if(root==null) // no node in root
root = newNode;
else // root occupied
{
Node current = root; // start at root
Node parent;
while(true) // (exits internally)
{
parent = current;
if(id < current.iData) // go left?
{
current = current.leftChild;
if(current == null) // if end of the line,
{ // insert on left
parent.leftChild = newNode;
return;
}
} // end if go left
else // or go right?
{
current = current.rightChild;
if(current == null) // if end of the line
{ // insert on right
parent.rightChild = newNode;
return;
}
} // end else go right
} // end while
} // end else not root
} // end insert()
// -------------------------------------------------------------
public boolean delete(int key) // delete node with given key
{ // (assumes non-empty list)
Node current = root;
Node parent = root;
boolean isLeftChild = true;
while(current.iData != key) // search for node
{
parent = current;
if(key < current.iData) // go left?
{
isLeftChild = true;
current = current.leftChild;
}
else // or go right?
{
isLeftChild = false;
current = current.rightChild;
}
if(current == null) // end of the line,
return false; // didn't find it
} // end while
// found node to delete
// if no children, simply delete it
if(current.leftChild==null &&
current.rightChild==null)
{
if(current == root) // if root,
root = null; // tree is empty
else if(isLeftChild)
parent.leftChild = null; // disconnect
else // from parent
parent.rightChild = null;
}
// if no right child, replace with left subtree
else if(current.rightChild==null)
if(current == root)
root = current.leftChild;
else if(isLeftChild)
parent.leftChild = current.leftChild;
else
parent.rightChild = current.leftChild;
// if no left child, replace with right subtree
else if(current.leftChild==null)
if(current == root)
root = current.rightChild;
else if(isLeftChild)
parent.leftChild = current.rightChild;
else
parent.rightChild = current.rightChild;
else // two children, so replace with inorder successor
{
// get successor of node to delete (current)
Node successor = getSuccessor(current);
// connect parent of current to successor instead
if(current == root)
root = successor;
else if(isLeftChild)
parent.leftChild = successor;
else
parent.rightChild = successor;
// connect successor to current's left child
successor.leftChild = current.leftChild;
} // end else two children
// (successor cannot have a left child)
return true; // success
} // end delete()
// -------------------------------------------------------------
// returns node with next-highest value after delNode
// goes to right child, then right child's left descendents
private Node getSuccessor(Node delNode)
{
Node successorParent = delNode;
Node successor = delNode;
Node current = delNode.rightChild; // go to right child
while(current != null) // until no more
{ // left children,
successorParent = successor;
successor = current;
current = current.leftChild; // go to left child
}
// if successor not
if(successor != delNode.rightChild) // right child,
{ // make connections
successorParent.leftChild = successor.rightChild;
successor.rightChild = delNode.rightChild;
}
return successor;
}
// -------------------------------------------------------------
public void traverse(int traverseType)
{
switch(traverseType)
{
case 1: System.out.print(" Preorder traversal: ");
preOrder(root);
break;
case 2: System.out.print(" Inorder traversal: ");
inOrder(root);
break;
case 3: System.out.print(" Postorder traversal: ");
postOrder(root);
break;
}
System.out.println();
}
// -------------------------------------------------------------
private void preOrder(Node localRoot)
{
if(localRoot != null)
{
System.out.print(localRoot.iData + " ");
preOrder(localRoot.leftChild);
preOrder(localRoot.rightChild);
}
}
// -------------------------------------------------------------
private void inOrder(Node localRoot)
{
if(localRoot != null)
{
inOrder(localRoot.leftChild);
System.out.print(localRoot.iData + " ");
inOrder(localRoot.rightChild);
}
}
// -------------------------------------------------------------
private void postOrder(Node localRoot)
{
if(localRoot != null)
{
postOrder(localRoot.leftChild);
postOrder(localRoot.rightChild);
System.out.print(localRoot.iData + " ");
}
}
// -------------------------------------------------------------
public void displayTree()
{
Stack globalStack = new Stack();
globalStack.push(root);
int nBlanks = 32;
boolean isRowEmpty = false;
System.out.println(
"......................................................");
while(isRowEmpty==false)
{
Stack localStack = new Stack();
isRowEmpty = true;
for(int j=0; j<nBlanks; j++)
System.out.print(' ');
while(globalStack.isEmpty()==false)
{
Node temp = (Node)globalStack.pop();
if(temp != null)
{
System.out.print(temp.iData);
localStack.push(temp.leftChild);
localStack.push(temp.rightChild);
if(temp.leftChild != null ||
temp.rightChild != null)
isRowEmpty = false;
}
else
{
System.out.print("--");
localStack.push(null);
localStack.push(null);
}
for(int j=0; j<nBlanks*2-2; j++)
System.out.print(' ');
} // end while globalStack not empty
System.out.println();
nBlanks /= 2;
while(localStack.isEmpty()==false)
globalStack.push( localStack.pop() );
} // end while isRowEmpty is false
System.out.println(
"......................................................");
} // end displayTree()
// -------------------------------------------------------------
} // end class Tree
////////////////////////////////////////////////////////////////
class TreeApp
{
public static void main(String[] args) throws IOException
{
int value;
Tree theTree = new Tree();
theTree.insert(50, 1.5);
theTree.insert(25, 1.2);
theTree.insert(75, 1.7);
theTree.insert(12, 1.5);
theTree.insert(37, 1.2);
theTree.insert(43, 1.7);
theTree.insert(30, 1.5);
theTree.insert(33, 1.2);
theTree.insert(87, 1.7);
theTree.insert(93, 1.5);
theTree.insert(97, 1.5);
while(true)
{
System.out.print("Enter first letter of show, ");
System.out.print("insert, find, delete, or traverse: ");
int choice = getChar();
switch(choice)
{
case 's':
theTree.displayTree();
break;
case 'i':
System.out.print("Enter value to insert: ");
value = getInt();
theTree.insert(value, value + 0.9);
break;
case 'f':
System.out.print("Enter value to find: ");
value = getInt();
Node found = theTree.find(value);
if(found != null)
{
System.out.print("Found: ");
found.displayNode();
System.out.print(" ");
}
else
System.out.print("Could not find ");
System.out.print(value + ' ');
break;
case 'd':
System.out.print("Enter value to delete: ");
value = getInt();
boolean didDelete = theTree.delete(value);
if(didDelete)
System.out.print("Deleted " + value + ' ');
else
System.out.print("Could not delete ");
System.out.print(value + ' ');
break;
case 't':
System.out.print("Enter type 1, 2 or 3: ");
value = getInt();
theTree.traverse(value);
break;
default:
System.out.print("Invalid entry ");
} // end switch
} // end while
} // end main()
// -------------------------------------------------------------
public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;
}
// -------------------------------------------------------------
public static char getChar() throws IOException
{
String s = getString();
return s.charAt(0);
}
//-------------------------------------------------------------
public static int getInt() throws IOException
{
String s = getString();
return Integer.parseInt(s);
}
// -------------------------------------------------------------
} // end class TreeApp
////////////////////////////////////////////////////////////////
Add to TreeApp the methods:
1. int size()
2. int depth(int key)
3. void removeLeaves()
4. int rightMinValue()
5. int leftMaxValue()
6. int maximum()
7. int minimum()
Add to menu options for user to select size(), depth(int key), removeLeaves(), rigtMinValue(), leftMaxValue(), maximum() and minimum().
Explanation / Answer
import java.util.Scanner;
/* Class BSTNode */
class BSTNode
{
BSTNode left, right;
int data;
/* Constructor */
public BSTNode()
{
left = null;
right = null;
data = 0;
}
/* Constructor */
public BSTNode(int n)
{
left = null;
right = null;
data = n;
}
/* Function to set left node */
public void setLeft(BSTNode n)
{
left = n;
}
/* Function to set right node */
public void setRight(BSTNode n)
{
right = n;
}
/* Function to get left node */
public BSTNode getLeft()
{
return left;
}
/* Function to get right node */
public BSTNode getRight()
{
return right;
}
/* Function to set data to node */
public void setData(int d)
{
data = d;
}
/* Function to get data from node */
public int getData()
{
return data;
}
}
/* Class BST */
class BST
{
private BSTNode root;
/* Constructor */
public BST()
{
root = null;
}
/* Function to check if tree is empty */
public boolean isEmpty()
{
return root == null;
}
/* Functions to insert data */
public void insert(int data)
{
root = insert(root, data);
}
/* Function to insert data recursively */
private BSTNode insert(BSTNode node, int data)
{
if (node == null)
node = new BSTNode(data);
else
{
if (data <= node.getData())
node.left = insert(node.left, data);
else
node.right = insert(node.right, data);
}
return node;
}
/* Functions to delete data */
public void delete(int k)
{
if (isEmpty())
System.out.println("Tree Empty");
else if (search(k) == false)
System.out.println("Sorry "+ k +" is not present");
else
{
root = delete(root, k);
System.out.println(k+ " deleted from the tree");
}
}
private BSTNode delete(BSTNode root, int k)
{
BSTNode p, p2, n;
if (root.getData() == k)
{
BSTNode lt, rt;
lt = root.getLeft();
rt = root.getRight();
if (lt == null && rt == null)
return null;
else if (lt == null)
{
p = rt;
return p;
}
else if (rt == null)
{
p = lt;
return p;
}
else
{
p2 = rt;
p = rt;
while (p.getLeft() != null)
p = p.getLeft();
p.setLeft(lt);
return p2;
}
}
if (k < root.getData())
{
n = delete(root.getLeft(), k);
root.setLeft(n);
}
else
{
n = delete(root.getRight(), k);
root.setRight(n);
}
return root;
}
/* Functions to count number of nodes */
public int countNodes()
{
return countNodes(root);
}
/* Function to count number of nodes recursively */
private int countNodes(BSTNode r)
{
if (r == null)
return 0;
else
{
int l = 1;
l += countNodes(r.getLeft());
l += countNodes(r.getRight());
return l;
}
}
/* Functions to search for an element */
public boolean search(int val)
{
return search(root, val);
}
/* Function to search for an element recursively */
private boolean search(BSTNode r, int val)
{
boolean found = false;
while ((r != null) && !found)
{
int rval = r.getData();
if (val < rval)
r = r.getLeft();
else if (val > rval)
r = r.getRight();
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
/* Function for inorder traversal */
public void inorder()
{
inorder(root);
}
private void inorder(BSTNode r)
{
if (r != null)
{
inorder(r.getLeft());
System.out.print(r.getData() +" ");
inorder(r.getRight());
}
}
/* Function for preorder traversal */
public void preorder()
{
preorder(root);
}
private void preorder(BSTNode r)
{
if (r != null)
{
System.out.print(r.getData() +" ");
preorder(r.getLeft());
preorder(r.getRight());
}
}
/* Function for postorder traversal */
public void postorder()
{
postorder(root);
}
private void postorder(BSTNode r)
{
if (r != null)
{
postorder(r.getLeft());
postorder(r.getRight());
System.out.print(r.getData() +" ");
}
}
}
/* Class BinarySearchTree */
public class BinarySearchTree
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/* Creating object of BST */
BST bst = new BST();
System.out.println("Binary Search Tree Test ");
char ch;
/* Perform tree operations */
do
{
System.out.println(" Binary Search Tree Operations ");
System.out.println("1. insert ");
System.out.println("2. delete");
System.out.println("3. search");
System.out.println("4. count nodes");
System.out.println("5. check empty");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
bst.insert( scan.nextInt() );
break;
case 2 :
System.out.println("Enter integer element to delete");
bst.delete( scan.nextInt() );
break;
case 3 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ bst.search( scan.nextInt() ));
break;
case 4 :
System.out.println("Nodes = "+ bst.countNodes());
break;
case 5 :
System.out.println("Empty status = "+ bst.isEmpty());
break;
default :
System.out.println("Wrong Entry ");
break;
}
/* Display tree */
System.out.print(" Post order : ");
bst.postorder();
System.out.print(" Pre order : ");
bst.preorder();
System.out.print(" In order : ");
bst.inorder();
System.out.println(" Do you want to continue (Type y or n) ");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.