According to the code given change the system ODE to the following to plot the t
ID: 3796955 • Letter: A
Question
According to the code given change the system ODE to the following to plot the trajectories.
system1:
x' = -x-y
y' = 2x - (2/3)y
system 2:
x''+(4/t)x'+(2/t^2)x = 0
$Sample script for plotting trajectories of a system using quiver clear all; close all; [x1,x2] meshgrid (-1: 0.1:1 1:0. 1:1) xdl zeros (size (x1)); xd2 zeros (size (x2) for i 1:20 for j 1:20 xdot sys (0, (x1 (i, j) x2 (i, j) xd1 (i, j) xdot (1) xd2 (i,j) xdot (2) end end figure (1); quiver (x1, x2,xd1,xd2) xlabel ('x1') ylabel ('x2'); title ('Direction field trajectories of a given system grid on & Function to define the differential equations is given below: function xdot sys (t,x) xdot. C-4 x (1) -8 x (2) -2*x (2) endExplanation / Answer
clear all;
close all;
[x1,x2] = meshgrid(-1:0.1:1,-1:0.1:1);
xd1 = zeros(size(x1));
xd2 = zeros(size(x2));
for i=1:20
for j=1:20
xdot = sys(0,[x1(i,j);x2(i,j) ]);
xd1(i,j) = xdot(1);
xd2(i,j) = xdot(2);
end
end
figure(1);
quiver(x1,x2,xd1,xd2);
xlabel('x1');
ylabel('x2');
title('Direction field trajectories of a given system')
grid on
%function to define differential equations
function xdot = sys(t,x)
xdot = [-1*x(1) - 1*x(2);2*x(1)-(2/3)*x(2)]
end
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.