let Q(x) denote \"x is even,\" P(x) denote \"x is prime,\" R(x) denote \"x is di
ID: 3790554 • Letter: L
Question
let Q(x) denote "x is even," P(x) denote "x is prime," R(x) denote "x is divisble by 6," G(x) denote x<= 5 and L(x,y) denote x<y. Determine what each of the following propositions asserts and whether it is true or false. The domain under discussion is the natural numbers.
a. x:(R(x)^P(x))
b. (x:R(x))^(x:P(x))
c.x:(G(x) -> P(x))
d.x:(P(x) -> ~(Q(x)) )
e. (x: P(x)) -> x: ~(Q(x))
f. (x: P(x)) -> x: (P(x) ^ R(x) )
g.x: (P(x) -> (P(x) ^ R(x) ) )
h. x:(R(x) -> y:(L(x,y) ^ (R(y) ) )
i.x:y: (L(x,y) ^ L(y,x) )
Explanation / Answer
a. x:(R(x)^P(x)) ---- true
b. (x:R(x))^(x:P(x)) -----true
c.x:(G(x) -> P(x)) ---- false
d.x:(P(x) -> ~(Q(x)) ) ----- true
e. (x: P(x)) -> x: ~(Q(x)) ------ false
f. (x: P(x)) -> x: (P(x) ^ R(x) ) -----false
g.x: (P(x) -> (P(x) ^ R(x) ) ) ---false
h. x:(R(x) -> y:(L(x,y) ^ (R(y) ) ) ---- true
i.x:y: (L(x,y) ^ L(y,x) ) -------- false
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.