Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

let Q(x) denote \"x is even,\" P(x) denote \"x is prime,\" R(x) denote \"x is di

ID: 3790554 • Letter: L

Question

let Q(x) denote "x is even," P(x) denote "x is prime," R(x) denote "x is divisble by 6," G(x) denote x<= 5 and L(x,y) denote x<y. Determine what each of the following propositions asserts and whether it is true or false. The domain under discussion is the natural numbers.

a. x:(R(x)^P(x))

b. (x:R(x))^(x:P(x))

c.x:(G(x) -> P(x))

d.x:(P(x) -> ~(Q(x)) )

e. (x: P(x)) -> x: ~(Q(x))

f. (x: P(x)) -> x: (P(x) ^ R(x) )

g.x: (P(x) -> (P(x) ^ R(x) ) )

h. x:(R(x) -> y:(L(x,y) ^ (R(y) ) )

i.x:y: (L(x,y) ^ L(y,x) )

Explanation / Answer

a. x:(R(x)^P(x)) ---- true

b. (x:R(x))^(x:P(x)) -----true

c.x:(G(x) -> P(x)) ---- false

d.x:(P(x) -> ~(Q(x)) ) ----- true   

e. (x: P(x)) -> x: ~(Q(x)) ------ false

f. (x: P(x)) -> x: (P(x) ^ R(x) ) -----false

g.x: (P(x) -> (P(x) ^ R(x) ) ) ---false

h. x:(R(x) -> y:(L(x,y) ^ (R(y) ) ) ---- true

i.x:y: (L(x,y) ^ L(y,x) ) -------- false