For all positive integers, let P(n) be the equation 2 + 4 + 6 + … + 2n = n(n + 1
ID: 3787041 • Letter: F
Question
For all positive integers, let P(n) be the equation
2 + 4 + 6 + … + 2n = n(n + 1)
a. Write the equation for the base case P(1) and verify that it is true.
b. Write the inductive hypothesis P(k)
c. Write the equation for P(k+1)
d-h. Prove that P(k+1) is true
(match the statement to its reason)(statement a-h = reason A-H)
a. Base Case
b. P(k)
c. P(k + 1)
d. 2 + 4 + 6 + … + 2(k + 1)
e. 2 + 4 + 6 + … + 2k + 2(k + 1)
f. k (k + 1) + 2(k + 1)
g. (k + 1) (k + 2)
h. This is the right side of P(k + 1)
Reasons:
2 + 4 + 6 + … + 2k = k(k + 1)
by inductive hypothesis
factor out like terms
expand our sequence
P(1) 2(1) = 1(1 + 1)
2 = 1(2)
2 = 2 true
2 + 4 + 6 + … + 2(k + 1) = (k + 1) ((k + 1) + 1)
2 + 4 + 6 + … + 2(k + 1) = (k + 1)(k + 2)
therefore we’ve proven it is true
left side of P(k + 1)
A.2 + 4 + 6 + … + 2k = k(k + 1)
B.by inductive hypothesis
C.factor out like terms
D.expand our sequence
E.P(1) 2(1) = 1(1 + 1)
2 = 1(2)
2 = 2 true
2 + 4 + 6 + … + 2(k + 1) = (k + 1) ((k + 1) + 1)
2 + 4 + 6 + … + 2(k + 1) = (k + 1)(k + 2)
therefore we’ve proven it is true
H.left side of P(k + 1)
Explanation / Answer
Please let me know in case of any issue.
Match:
a => E
b => A
c => F
d => H
e => D
f => B
g => c
h => G
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.