Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Define two variable: alpha = 5 pi/8, and beta = pi/8. using these variable, show

ID: 3781310 • Letter: D

Question

Define two variable: alpha = 5 pi/8, and beta = pi/8. using these variable, show that the following trig identity is correct by calculating the values of the left and the right sides of the equation sin alpha cos beta = 1/2 [sin(alpha - beta)+sin(alpha + beta)] in the triangle shown a = 9 cm, b = 18 cm, and c = 25 cm. Define a, b, and c as variables, and then: Calculate the angle alpha (in degrees) by substituting the variables in the Law of Cosines. (Law of Cosines: c^2 = a^2 +b^2-2abcosgamma) Calculate the angles beta and gamma (in degrees) using the Law of Sines. Check that the sum of the angles is 180 degree. In the right triangle shown a = 16 cm and c = 50 cm. Define a and c as variables, and then: Using the Pythagorean Theorem, calculate b by typing one line in the MATLAB Command Window. Using b from part (a) and the a cos d function, calculate the angle a in degrees by typing one line in the MATLAB Command Window. The distance d from a point (x_0, y_0 z_0) to a plane Ax + By +Cz +D = 0 is given by d = |ax_0 + By_0 +Cz_0 + D|/squareroot A^2 +B^2 + C^2 Determine the distance of the point(8,3,-10) from the plane 2x +23y+13z-24 = 0.First define the variables A,B,C,D,x_0,y_0, and z_0 and then calculate d.(Use the abs and sqrt functions.)

Explanation / Answer

PROBLEM 2:
I have taken pi value as 180.

>> a = (5*180)/8

a =

112.5000

>> b = (180/8)

b =

22.5000

>> LHS = sin(a) * cos(b)

LHS =

0.4912

>> RHS = 0.5 * (sin(a-b) + sin(a+b))

RHS =

0.4912

We can see LHS = RHS.
--------------------------------------------------------------------------
PROBLEM 3:
(a)
To find alpha, the Law of Cosines formula used is as below.
   I have denoted alpha as 'x'.
  
   a2 = b2 + c2 -2bccosx
  
   cosx = (b2 + c2 - a2)/(2*b*c)
  
   To get x, take cos inverse of RHS
  
   >> a

   a =

       9

   >> b

   b =

       18

   >> c

   c =

       25

   >> X = (b^2 + c^2 - a^2)/(2*b*c)

   X =

       0.9644

   >> X = acosd(X)

   X =

   15.3341
     
   The alpha value is 15.3341 degrees
      
(b)
   Law of Sines for triangle with sides a, b and c and angle denoted by X (opposite to side a), Y(opposite to side b) and Z(opposite to side c) is
   (sin(X)/a) = (sin(Y)/b) = (sin(Z)/c)
  
   Here alpha = X
       beta = Y
       gamma = Z
         
   To calculate Y and Z using Law of Sines, we use the below formula,
  
   We have a and A available from part (a).
  
   So, sinY = b * (sin(X)/a)
       To get Y take sine inverse.
      
   Similarly, sinZ = c * (sin(X)/a)
               To get Z take sine inverse.
          
       >> a

   a =

       9

   >> b

   b =

       18

   >> c

   c =

       25

   >> X

   X =

   15.3341

   >> Y = asind(b*(sind(X)/a))

   Y =

   31.9309

   >> C = asind(c*(sind(X)/a))

   C =

   47.2715

(c)
   >> X+Y+Z

   ans =

       94.5365
      
   Sum of all angles will not be equal to 180 if you find all angles by the formula.
  
---------------------------------------------------------------
PROBLEM 4:
(a)
   >> a = 16

   a =

       16

   >> b = 50

   b =

       50

   >> c = sqrt(a^2 + b^2)

   c =

   52.4976
     
(b)
   alpha = acosd(b/c)

alpha =

17.7447

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote