You will write a Java program that implements Conway’s Game of Life, a simple ce
ID: 3763979 • Letter: Y
Question
You will write a Java program that implements Conway’s Game of Life, a simple cellular automaton discussed in class. See for example:
http://www.bitstorm.org/gameoflife/
Our simplified version has a 10 x 10 grid, numbered like this:
0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9
The grid is represented by a 10 x 10 2-dimensional integer array. If the grid point (i, j) is “populated”, the array element [i][j] contains 1; otherwise it contains 0. Elements along the edges, i == 0 or 9, or j == 0 or 9, are always unpopulated.
When we display the grid, a populated cell is indicated by a ‘#’; an unpopulated cell is indicated by a space.
What your program should do:
Prompt the user to enter a list of (i,j) pairs (both non-negative integers)
(stop when a negative integer is read for either i or j)
Prompt the user to enter the number of time steps
Initialize the grid based on the (i,j) pairs entered by the user
Display the initial state of the grid
(call the displayGrid() method)
For each time step,
update the grid according to Conway’s rules (call the updateGrid() method)
display the grid (call the displayGrid() method)
We follow Conway’s standard rules for updating the cells.
For a cell that is “populated”, if the cell has <= 1 neighbors, or > = 4 neighbors, it dies (becomes 0). Otherwise, it survives (remains 1).
For a cell that is not populated, if the cell has exactly 3 neighbors, it becomes populated (becomes 1).
Cells on the edge always remain unpopulated (0).
Some sample runs are shown in text files on libra in ~whsu/csc210/P8/.
The displayGrid() method has prototype:
void displayGrid(int mat[][]);
It displays the borders of the grid (see sample runs below), and prints the 10 x 10 grid of cells. Populated cells are indicated with a ‘#’ sign, unpopulated cells with a space.
The updateGrid() method has prototype:
void updateGrid(int mat[][]);
mat is the 2-dimensional array that contains the current state of the grid. The method counts the neighbors in each cell of the grid, updates the cells in the grid according to Conway’s rules, and returns the grid.
You can obviously enter arbitrary initial conditions to test your program. Some fun examples adapted from the bitstorm.org site:
Glider (in ~whsu/csc210/P8/glider on libra); initial populated cells at (3, 4) (4, 2) (4, 4) (5, 3) (5, 4)
5 cell row (in ~whsu/csc210/P8/row on libra); initial populated cells at (6,4) (6,5) (6,6) (6,7) (6,8)
Small explosion (in ~whsu/csc210/P8/smallex on libra); initial populated cells at (4, 5) (4,6) (5,4) (5,5) (5, 7) (6, 5) (6,6)
Note that these will not behave exactly the same as the bitstorm.org display when the populated cells run into the boundary conditions.
Sample runs:
libra% java Life
Please enter list of (i,j) pairs for populated cells
(negative i or j to quit): 6 4 6 5 6 6 6 7 6 8 -1 -1
Enter number of time steps: 5
Initial grid:
0123456789
0
1
2
3
4
5
##### 6
7
8
9
Time step 1
0123456789
0
1
2
3
4
### 5
### 6
### 7
8
9
Time step 2
0123456789
0
1
2
3
# 4
# # 5
# # 6
# # 7
# 8
9
Time step 3
0123456789
0
1
2
3
# 4
### 5
## ## 6
### 7
# 8
9
Time step 4
0123456789
0
1
2
3
### 4
# # 5
# # 6
# # 7
### 8
9
Time step 5
0123456789
0
1
2
# 3
### 4
# # # 5
### ## 6
# # # 7
### 8
9
libra% java Life
Please enter list of (i,j) pairs for populated cells
(negative i or j to quit): 4 5
4 6
5 4
5 5
5 7
6 5
6 6
-1 -1
Enter number of time steps: 5
Initial grid:
0123456789
0
1
2
3
## 4
## # 5
## 6
7
8
9
Time step 1
0123456789
0
1
2
3
### 4
# # 5
### 6
7
8
9
Time step 2
0123456789
0
1
2
# 3
### 4
# # 5
### 6
# 7
8
9
Time step 3
0123456789
0
1
2
### 3
### 4
# # 5
### 6
### 7
8
9
Time step 4
0123456789
0
1
# 2
# # 3
# # 4
# # 5
# # 6
# # 7
# 8
9
Time step 5
0123456789
0
1
# 2
### 3
## ## 4
### ### 5
## ## 6
### 7
# 8
9
Explanation / Answer
Cell.java
class Cell
{
public Point Position
{
get;
private set;
}
public Rectangle Bounds
{
get;
private set;
}
public bool IsAlive
{
get;
set;
}
public Cell(Point position)
{
Position = position;
Bounds = new Rectangle(Position.X * Game1.CellSize, Position.Y * Game1.CellSize, Game1.CellSize, Game1.CellSize);
IsAlive = false;
}
public void Update(MouseState mouseState)
{
if (Bounds.Contains(new Point(mouseState.X, mouseState.Y)))
{
if (mouseState.LeftButton == ButtonState.Pressed)
IsAlive = true;
else if (mouseState.RightButton == ButtonState.Pressed)
IsAlive = false;
}
}
public void Draw(SpriteBatch spriteBatch)
{
if (IsAlive)
spriteBatch.Draw(Game1.Pixel, Bounds, Color.Black);
}
}
Grid.Java
class Grid
{
public Point Size { get; private set; }
private Cell[,] cells;
public Grid()
{
Size = new Point(Game1.CellsX, Game1.CellsY);
cells = new Cell[Size.X, Size.Y];
for (int i = 0; i < Size.X; i++)
for (int j = 0; j < Size.Y; j++)
cells[i, j] = new Cell(new Point(i, j));
}
public void Update(GameTime gameTime)
{
for (int i = 0; i < Size.X; i++)
{
for (int j = 0; j < Size.Y; j++)
{
bool living = cells[i, j].IsAlive;
int count = GetLivingNeighbors(i, j);
bool result = false;
if (living && count < 2)
result = false;
if (living && (count == 2 || count == 3))
result = true;
if (living && count > 3)
result = false;
if (!living && count == 3)
result = true;
cells[i, j].IsAlive = result;
}
}
}
public int GetLivingNeighbors(int x, int y)
{
int count = 0;
if (x != Size.X - 1)
if (cells[x + 1, y].IsAlive)
count++;
if (x != Size.X - 1 && y != Size.Y - 1)
if (cells[x + 1, y + 1].IsAlive)
count++;
if (y != Size.Y - 1)
if (cells[x, y + 1].IsAlive)
count++;
if (x != 0 && y != Size.Y - 1)
if (cells[x - 1, y + 1].IsAlive)
count++;
if (x != 0)
if (cells[x - 1, y].IsAlive)
count++;
if (x != 0 && y != 0)
if (cells[x - 1, y - 1].IsAlive)
count++;
if (y != 0)
if (cells[x, y - 1].IsAlive)
count++;
if (x != Size.X - 1 && y != 0)
if (cells[x + 1, y - 1].IsAlive)
count++;
return count;
}
public void SetNextState()
{
for (int i = 0; i < Size.X; i++)
for (int j = 0; j < Size.Y; j++)
cells[i, j].IsAlive = nextCellStates[i, j];
}
public void Draw(SpriteBatch spriteBatch)
{
foreach (Cell cell in cells)
cell.Draw(spriteBatch);
for (int i = 0; i < Size.X; i++)
spriteBatch.Draw(Game1.Pixel, new Rectangle(i * Game1.CellSize - 1, 0, 1, Size.Y * Game1.CellSize), Color.DarkGray);
for (int j = 0; j < Size.Y; j++)
spriteBatch.Draw(Game1.Pixel, new Rectangle(0, j * Game1.CellSize - 1, Size.X * Game1.CellSize, 1), Color.DarkGray);
}
protected override void Update(GameTime gameTime)
{
keyboardState = Keyboard.GetState();
if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
this.Exit();
if (keyboardState.IsKeyDown(Keys.Space) && lastKeyboardState.IsKeyUp(Keys.Space))
Paused = !Paused;
if (keyboardState.IsKeyDown(Keys.Back) && lastKeyboardState.IsKeyUp(Keys.Back))
grid.Clear();
base.Update(gameTime);
grid.Update(gameTime);
lastKeyboardState = keyboardState;
}
protected override void Draw(GameTime gameTime)
{
if (Paused)
GraphicsDevice.Clear(Color.Red);
else
GraphicsDevice.Clear(Color.White);
spriteBatch.Begin();
if (Paused)
{
string paused = "Paused";
spriteBatch.DrawString(Font, paused, ScreenSize / 2, Color.Gray, 0f, Font.MeasureString(paused) / 2, 1f, SpriteEffects.None, 0f);
}
grid.Draw(spriteBatch);
spriteBatch.End();
base.Draw(gameTime);
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.