Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Write a computer code that uses Gaussian Elimination and Back Substitution to so

ID: 3749172 • Letter: W

Question

Write a computer code that uses Gaussian Elimination and Back Substitution to solve the following linear symmetric tridiagonal system of N equations and N unknowns (written in matrix form)

In these equations, the values of the four unknowns:

• N = the number of equations (and unknowns),

• a = the diagonal coefficients,

• b = the super- and sub-diagonal elements,

• q = the source coefficients should be specified in separate input lines.

Write your code so that the output is formatted as: x1 = (numerical value) x2 = (numerical value) . . . xN = (numerical value)

ab 0 . -b a b 0 0 -b a -b 0 -b 0 TN-1 0

Explanation / Answer

Hey, just replace your linear equation in matrix form in the input matrix inside the main method. I have run and checked this code, its working fine. Hope this hels you.

// C++ program to demostrate working of Guassian Elimination

// method

#include<bits/stdc++.h>

using namespace std;

#define N 3 // Number of unknowns

// function to reduce matrix to r.e.f. Returns a value to

// indicate whether matrix is singular or not

int forwardElim(double mat[N][N+1]);

// function to calculate the values of the unknowns

void backSub(double mat[N][N+1]);

// function to get matrix content

void gaussianElimination(double mat[N][N+1])

{

/* reduction into r.e.f. */

int singular_flag = forwardElim(mat);

/* if matrix is singular */

if (singular_flag != -1)

{

printf("Singular Matrix. ");

/* if the RHS of equation corresponding to

zero row is 0, * system has infinitely

many solutions, else inconsistent*/

if (mat[singular_flag][N])

printf("Inconsistent System.");

else

printf("May have infinitely many "

"solutions.");

return;

}

/* get solution to system and print it using

backward substitution */

backSub(mat);

}

// function for elemntary operation of swapping two rows

void swap_row(double mat[N][N+1], int i, int j)

{

//printf("Swapped rows %d and %d ", i, j);

for (int k=0; k<=N; k++)

{

double temp = mat[i][k];

mat[i][k] = mat[j][k];

mat[j][k] = temp;

}

}

// function to print matrix content at any stage

void print(double mat[N][N+1])

{

for (int i=0; i<N; i++, printf(" "))

for (int j=0; j<=N; j++)

printf("%lf ", mat[i][j]);

printf(" ");

}

// function to reduce matrix to r.e.f.

int forwardElim(double mat[N][N+1])

{

for (int k=0; k<N; k++)

{

// Initialize maximum value and index for pivot

int i_max = k;

int v_max = mat[i_max][k];

/* find greater amplitude for pivot if any */

for (int i = k+1; i < N; i++)

if (abs(mat[i][k]) > v_max)

v_max = mat[i][k], i_max = i;

/* if a prinicipal diagonal element is zero,

* it denotes that matrix is singular, and

* will lead to a division-by-zero later. */

if (!mat[k][i_max])

return k; // Matrix is singular

/* Swap the greatest value row with current row */

if (i_max != k)

swap_row(mat, k, i_max);

for (int i=k+1; i<N; i++)

{

/* factor f to set current row kth elemnt to 0,

* and subsequently remaining kth column to 0 */

double f = mat[i][k]/mat[k][k];

/* subtract fth multiple of corresponding kth

row element*/

for (int j=k+1; j<=N; j++)

mat[i][j] -= mat[k][j]*f;

/* filling lower triangular matrix with zeros*/

mat[i][k] = 0;

}

//print(mat); //for matrix state

}

//print(mat); //for matrix state

return -1;

}

// function to calculate the values of the unknowns

void backSub(double mat[N][N+1])

{

double x[N]; // An array to store solution

/* Start calculating from last equation up to the

first */

for (int i = N-1; i >= 0; i--)

{

/* start with the RHS of the equation */

x[i] = mat[i][N];

/* Initialize j to i+1 since matrix is upper

triangular*/

for (int j=i+1; j<N; j++)

{

/* subtract all the lhs values

* except the coefficient of the variable

* whose value is being calculated */

x[i] -= mat[i][j]*x[j];

}

/* divide the RHS by the coefficient of the

unknown being calculated */

x[i] = x[i]/mat[i][i];

}

printf(" Solution for the system: ");

for (int i=0; i<N; i++)

printf("%lf ", x[i]);

}

// Main program

int main()

{

/* input matrix */

double mat[N][N+1] = {{3.0, 2.0,-4.0, 3.0},

{2.0, 3.0, 3.0, 15.0},

{5.0, -3, 1.0, 14.0}

};

gaussianElimination(mat);

return 0;

}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote