Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

(IN JAVA) Do the following 5 methods without importing extra functions besides t

ID: 3748834 • Letter: #

Question

(IN JAVA) Do the following 5 methods without importing extra functions besides the default (i.e. System, Math)

METHOD 1: public static boolean isPrime(int i) This method should return true if and only if the input i is a positive prime number. A prime is a number which son y divs b a primes) METHOD 2: public static int numPrimes(int lower, int upper) This method will return the total number of primes in the range between lower and upper, including lower and upper themselves. Hint: it's possible to use isPrime(int i) as part of the computation. METHOD 3: public static int factorial(int n) Find the factorial of n, which is given by n! 1 2.(n-1)*n. The factorial of zero is a special case which is equal to 1 METHOD 4: public static double sumPower(int n, double p) Sums the series 1P+2P+n-1)PnP. METHOD 5: public static int boundedSum(int] list, int low, int high) Sums up the elements in list, but only including the elements x in list for which low Sx S high and e f owe ert nurnberso un lent considered

Explanation / Answer

//java functions

public class Function {

public static void main(String args[]) {

int arr[]= {34,67,23,1,2,90,34};

System.out.println("prime numbers between 1 to 30");

numPrimes(1,30);

System.out.println(" 10! = "+factorial(10));

System.out.println(" powersum(2 , 10) : "+sumPower(2,10));

System.out.println(" boundedsum(arr , 2, 5) : "+boundedSum(arr ,2, 5));

}

public static boolean isPrime(int n) {

if(n==1)return false;

for(int i=2 ;i*i<=n;i++)

if(n%i==0)return false;

return true;

}

public static void numPrimes(int lower ,int upper) {

for(int i=lower ;i<=upper;i++)

if(isPrime(i)==true)System.out.print(i+" ");

}

public static int factorial(int n) {

if(n==0)return 1;

else return n*factorial(n-1);

}

public static double sumPower(int n ,double p) {

if(n==0)return 0;

else return Math.pow(n, p)+ sumPower(n-1,p);

}

public static int boundedSum(int []list ,int low,int high) {

int sum=0;

for(int i=low ;i<=high;i++)

sum+=list[i];

return sum;

}

}