Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

import random import string Target=”Hello,world!” def mutate(parent1, parent2):

ID: 3740833 • Letter: I

Question

import random

import string

Target=”Hello,world!”

def mutate(parent1, parent2):

   child_dna = parent1['dna'][:]

   # Mix both DNAs

   start = random.randint(0, len(parent2['dna']) - 1)

   stop = random.randint(0, len(parent2['dna']) - 1)

   if start > stop:

      stop, start = start, stop

   child_dna[start:stop] = parent2['dna'][start:stop]

# Mutate one position

   charpos = random.randint(0, len(child_dna) - 1)

   child_dna[charpos] = chr(ord(child_dna[charpos]) + random.randint(-1,1))

   child_fitness = calc_fitness(child_dna, target)

   return({'dna': child_dna, 'fitness': child_fitness})

GENSIZE = 20

genepool = []

for i in range(0, GENSIZE):

   dna = [random.choice(string.printable[:-5]) for j in range(0, len(target))]

   fitness = calc_fitness(dna, target)

   candidate = {'dna': dna, 'fitness': fitness }

   genepool.append(candidate)

def mutate(parent1, parent2):

   child_dna = parent1['dna'][:]

   # Mix both DNAs

   start = random.randint(0, len(parent2['dna']) - 1)

   stop = random.randint(0, len(parent2['dna']) - 1)

   if start > stop:

      stop, start = start, stop

child_dna[start:stop] = parent2['dna'][start:stop]

def dump_genepool(generation,genepool);

    for candidate in genepool:

    print “%6i%6i %15s”%( generation,candidate[‘fitness’],

“.join(candidate[‘dna’])

)

   Print

this is a pyton program I want to some one to change it in matlab program and the quation says

Your program must include at least 3 user-defined function (fitness.m, get_parent.m and mutate.m).

The user can enter any user defined string as the evolutionary target up to 30 characters max.

The program should randomly generate the first generation of parents from which to breed.

The program should print out every 100th iteration and the best-fit individual along with its fitness in the command window.

Explanation / Answer

#!/usr/bin/env python # this is a genetic algorithms tutorial by krista