Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Paragraph Styles Due Date: 3/27/18 How does a hashing algorithm work? Descriptio

ID: 3731117 • Letter: P

Question

Paragraph Styles Due Date: 3/27/18 How does a hashing algorithm work? Description_ You are required to work on this project individually not in a group. You should work on this project outside of the class time. Objectives Secure Hash Algorithm is a cryptographic hash function designed by the United States National Security Agency and is a U.S. Federal Information Processing Standard published by the United States · Research Wnite C++ Program showing how it works How do one-way hash functions work? Research vanious methods security could be used on hash functions ind write a report on t · List the different methods you identified in your search Project Deliverables Projects reports are expected to be 2 pages long Don't stretch the report just to meet a particular page number, nor feel constrained if it needs to be longer to get your key points and results o o A good report must answer the standard questions about any research project Prepare a class PowerPoint Presentation and DEMO (50% of your grade is based on successful DEMO with documentation) · It needs to be submitted in Moodle on due date before the class otherwise it will not be graded. NO LATE WORK ACCEPTED Be prepared to present it during the class. REQUIREMMENTS Amy project received after the time of the class is considered late (NO EXCUSES) and is S0% off for each daas it is late. graded with

Explanation / Answer

Q: C++ program for SHA-1:

A:

/***************************** Pragram Starts Here *************************************/

#include "sha1.hpp"
#include <sstream>
#include <iomanip>
#include <fstream>


static const size_t BLOCK_INTS = 16; /* number of 32bit integers per SHA1 block */
static const size_t BLOCK_BYTES = BLOCK_INTS * 4;


static void reset(uint32_t digest[], std::string &buffer, uint64_t &transforms)
{
/* SHA1 initialization constants */
digest[0] = 0x67452301;
digest[1] = 0xefcdab89;
digest[2] = 0x98badcfe;
digest[3] = 0x10325476;
digest[4] = 0xc3d2e1f0;

/* Reset counters */
buffer = "";
transforms = 0;
}


static uint32_t rol(const uint32_t value, const size_t bits)
{
return (value << bits) | (value >> (32 - bits));
}


static uint32_t blk(const uint32_t block[BLOCK_INTS], const size_t i)
{
return rol(block[(i+13)&15] ^ block[(i+8)&15] ^ block[(i+2)&15] ^ block[i], 1);
}


/*
* (R0+R1), R2, R3, R4 are the different operations used in SHA1
*/

static void R0(const uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i)
{
z += ((w&(x^y))^y) + block[i] + 0x5a827999 + rol(v, 5);
w = rol(w, 30);
}


static void R1(uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i)
{
block[i] = blk(block, i);
z += ((w&(x^y))^y) + block[i] + 0x5a827999 + rol(v, 5);
w = rol(w, 30);
}


static void R2(uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i)
{
block[i] = blk(block, i);
z += (w^x^y) + block[i] + 0x6ed9eba1 + rol(v, 5);
w = rol(w, 30);
}


static void R3(uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i)
{
block[i] = blk(block, i);
z += (((w|x)&y)|(w&x)) + block[i] + 0x8f1bbcdc + rol(v, 5);
w = rol(w, 30);
}


static void R4(uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i)
{
block[i] = blk(block, i);
z += (w^x^y) + block[i] + 0xca62c1d6 + rol(v, 5);
w = rol(w, 30);
}


/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/

static void transform(uint32_t digest[], uint32_t block[BLOCK_INTS], uint64_t &transforms)
{
/* Copy digest[] to working vars */
uint32_t a = digest[0];
uint32_t b = digest[1];
uint32_t c = digest[2];
uint32_t d = digest[3];
uint32_t e = digest[4];

/* 4 rounds of 20 operations each. Loop unrolled. */
R0(block, a, b, c, d, e, 0);
R0(block, e, a, b, c, d, 1);
R0(block, d, e, a, b, c, 2);
R0(block, c, d, e, a, b, 3);
R0(block, b, c, d, e, a, 4);
R0(block, a, b, c, d, e, 5);
R0(block, e, a, b, c, d, 6);
R0(block, d, e, a, b, c, 7);
R0(block, c, d, e, a, b, 8);
R0(block, b, c, d, e, a, 9);
R0(block, a, b, c, d, e, 10);
R0(block, e, a, b, c, d, 11);
R0(block, d, e, a, b, c, 12);
R0(block, c, d, e, a, b, 13);
R0(block, b, c, d, e, a, 14);
R0(block, a, b, c, d, e, 15);
R1(block, e, a, b, c, d, 0);
R1(block, d, e, a, b, c, 1);
R1(block, c, d, e, a, b, 2);
R1(block, b, c, d, e, a, 3);
R2(block, a, b, c, d, e, 4);
R2(block, e, a, b, c, d, 5);
R2(block, d, e, a, b, c, 6);
R2(block, c, d, e, a, b, 7);
R2(block, b, c, d, e, a, 8);
R2(block, a, b, c, d, e, 9);
R2(block, e, a, b, c, d, 10);
R2(block, d, e, a, b, c, 11);
R2(block, c, d, e, a, b, 12);
R2(block, b, c, d, e, a, 13);
R2(block, a, b, c, d, e, 14);
R2(block, e, a, b, c, d, 15);
R2(block, d, e, a, b, c, 0);
R2(block, c, d, e, a, b, 1);
R2(block, b, c, d, e, a, 2);
R2(block, a, b, c, d, e, 3);
R2(block, e, a, b, c, d, 4);
R2(block, d, e, a, b, c, 5);
R2(block, c, d, e, a, b, 6);
R2(block, b, c, d, e, a, 7);
R3(block, a, b, c, d, e, 8);
R3(block, e, a, b, c, d, 9);
R3(block, d, e, a, b, c, 10);
R3(block, c, d, e, a, b, 11);
R3(block, b, c, d, e, a, 12);
R3(block, a, b, c, d, e, 13);
R3(block, e, a, b, c, d, 14);
R3(block, d, e, a, b, c, 15);
R3(block, c, d, e, a, b, 0);
R3(block, b, c, d, e, a, 1);
R3(block, a, b, c, d, e, 2);
R3(block, e, a, b, c, d, 3);
R3(block, d, e, a, b, c, 4);
R3(block, c, d, e, a, b, 5);
R3(block, b, c, d, e, a, 6);
R3(block, a, b, c, d, e, 7);
R3(block, e, a, b, c, d, 8);
R3(block, d, e, a, b, c, 9);
R3(block, c, d, e, a, b, 10);
R3(block, b, c, d, e, a, 11);
R4(block, a, b, c, d, e, 12);
R4(block, e, a, b, c, d, 13);
R4(block, d, e, a, b, c, 14);
R4(block, c, d, e, a, b, 15);
R4(block, b, c, d, e, a, 0);
R4(block, a, b, c, d, e, 1);
R4(block, e, a, b, c, d, 2);
R4(block, d, e, a, b, c, 3);
R4(block, c, d, e, a, b, 4);
R4(block, b, c, d, e, a, 5);
R4(block, a, b, c, d, e, 6);
R4(block, e, a, b, c, d, 7);
R4(block, d, e, a, b, c, 8);
R4(block, c, d, e, a, b, 9);
R4(block, b, c, d, e, a, 10);
R4(block, a, b, c, d, e, 11);
R4(block, e, a, b, c, d, 12);
R4(block, d, e, a, b, c, 13);
R4(block, c, d, e, a, b, 14);
R4(block, b, c, d, e, a, 15);

/* Add the working vars back into digest[] */
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;

/* Count the number of transformations */
transforms++;
}


static void buffer_to_block(const std::string &buffer, uint32_t block[BLOCK_INTS])
{
/* Convert the std::string (byte buffer) to a uint32_t array (MSB) */
for (size_t i = 0; i < BLOCK_INTS; i++)
{
block[i] = (buffer[4*i+3] & 0xff)
| (buffer[4*i+2] & 0xff)<<8
| (buffer[4*i+1] & 0xff)<<16
| (buffer[4*i+0] & 0xff)<<24;
}
}


SHA1::SHA1()
{
reset(digest, buffer, transforms);
}


void SHA1::update(const std::string &s)
{
std::istringstream is(s);
update(is);
}


void SHA1::update(std::istream &is)
{
while (true)
{
char sbuf[BLOCK_BYTES];
is.read(sbuf, BLOCK_BYTES - buffer.size());
buffer.append(sbuf, is.gcount());
if (buffer.size() != BLOCK_BYTES)
{
return;
}
uint32_t block[BLOCK_INTS];
buffer_to_block(buffer, block);
transform(digest, block, transforms);
buffer.clear();
}
}


/*
* Add padding and return the message digest.
*/

std::string SHA1::final()
{
/* Total number of hashed bits */
uint64_t total_bits = (transforms*BLOCK_BYTES + buffer.size()) * 8;

/* Padding */
buffer += 0x80;
size_t orig_size = buffer.size();
while (buffer.size() < BLOCK_BYTES)
{
buffer += (char)0x00;
}

uint32_t block[BLOCK_INTS];
buffer_to_block(buffer, block);

if (orig_size > BLOCK_BYTES - 8)
{
transform(digest, block, transforms);
for (size_t i = 0; i < BLOCK_INTS - 2; i++)
{
block[i] = 0;
}
}

/* Append total_bits, split this uint64_t into two uint32_t */
block[BLOCK_INTS - 1] = total_bits;
block[BLOCK_INTS - 2] = (total_bits >> 32);
transform(digest, block, transforms);

/* Hex std::string */
std::ostringstream result;
for (size_t i = 0; i < sizeof(digest) / sizeof(digest[0]); i++)
{
result << std::hex << std::setfill('0') << std::setw(8);
result << digest[i];
}

/* Reset for next run */
reset(digest, buffer, transforms);

return result.str();
}


std::string SHA1::from_file(const std::string &filename)
{
std::ifstream stream(filename.c_str(), std::ios::binary);
SHA1 checksum;
checksum.update(stream);
return checksum.final();
}

/***************************** Program Ends Here **************************************/

Q: How does one way hash function work?

A: A one-way hash function is a mathematical function which takes a variable-length input string and converts it into a fixed-length binary sequence. Furthermore, a one-way hash function is designed in such a way that it is hard to reverse the process, that is, to find a string that hashes to a given value (hence the name one-way.)

Q: Varoius method security for hash function?

A: Generally, the basic security of cryptographic hash functions can be seen from three different angles: pre-image resistance, second pre-image resistance, and collision resistance.

Pre-image resistance: given a hash {displaystyle h}h it should be hard to find any message {displaystyle m}m such that {displaystyle h=hash(m)}{displaystyle h=hash(m)}. This concept is related to that of the one-way function. Functions that lack this property are vulnerable to pre-image attacks.


Second pre-image resistance: given an input {displaystyle m_{1}}m_{1}, it should be hard to find another input, {displaystyle m_{2}}m_{2} (not equal to {displaystyle m_{1}}m_{1}) such that {displaystyle hash(m_{1})=hash(m_{2})}{displaystyle hash(m_{1})=hash(m_{2})}. This property is sometimes referred to as weak collision resistance. Functions that lack this property are vulnerable to second pre-image attacks.


Collision resistance: it should be hard to find two different messages {displaystyle m_{1}}m_{1} and {displaystyle m_{2}}m_{2} such that {displaystyle hash(m_{1})=hash(m_{2})}{displaystyle hash(m_{1})=hash(m_{2})}. Such a pair is called a (cryptographic) hash collision. This property is sometimes referred to as strong collision resistance. It requires a hash value at least twice as long as what is required for pre-image resistance, otherwise collisions may be found by a birthday attack.