Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

I am writing a program in C++ that will implement an AVL tree. the first part of

ID: 3725084 • Letter: I

Question

I am writing a program in C++ that will implement an AVL tree. the first part of the insertion should work where a node gets inserted like a normal BST node, but after that, I'm not so sure I did this correctly. I don't think my while loop in the insertion is working. I need to be able to check if the balence factor is correct starting from the leaf node to the root node which is why I have the while loop. here is the code:

BSTNode::BSTNode(int key) :

key_(key),

parent_(std::weak_ptr<BSTNode>()),

left_(nullptr),

right_(nullptr) {

}

BSTNode::BSTNode(int key, std::weak_ptr<BSTNode> parent) :

key_(key),

parent_(parent),

left_(nullptr),

right_(nullptr) {

}

bool BSTNode::IsLeaf() const {

return left_ == nullptr && right_ == nullptr;

}

bool BSTNode::HasLeftChild() const {

return left_ != nullptr;

}

bool BSTNode::HasRightChild() const {

return right_ != nullptr;

}

void BST::Balance(){

if (balance > 1 && key < node->left_->key)

return rightRotate(node);

if (balance < -1 && key > node->right_->key)

return leftRotate(node);

if (balance > 1 && key > node->left_->key)

{

node->left = leftRotate(node->left_);

return rightRotate(node);

}

if (balance < -1 && key < node->right_->key)

{

node->right = rightRotate(node->right_);

return leftRotate(node);

}

}

int BSTNode::rightRotate(std::shared_ptr<BSTNode> y)

{

weak_ptr<BSTNode> parent = y->parent;

shared_ptr<BSTNode> x = y->left_;

shared_ptr<BSTNode> t3 = y->right_;

shared_ptr<BSTNode> t1 = x->left;

shared_ptr<BSTNode> t2 = x->right;

// Perform rotation

x->right_ = y;

y->left_ = t2;

t2.parent=y;

y->parent=x;

x->parent= parent;

if(parent->left_-> == x)

parent->left = x;

if(parent->right_->key == x->key)

parent->right = x;

// Update heights

y->height = max(height(y->left), height(y->right))+1;

x->height = max(height(x->left), height(x->right))+1;

// Return new root

return x;

}

int BSTNode::leftRotate(std::shared_ptr<BSTNode> x)

{

weak_ptr<BSTNode> parent = x->parent;

shared_ptr<BSTNode> t1 = x->left_;

shared_ptr<BSTNode> y = x->right_;

shared_ptr<BSTNode> t2 = y->left;

shared_ptr<BSTNode> t3 = y->right;

// Perform rotation

y->left_ = x;

x->right_ = t2;

t2->parent=x;

x->parent=y;

y->parent= parent;

//determine if left child or right child

if(parent->left_->key == y->key)

parent->left_ = y;

else

parent->right = y;

// Update heights

x->height = max(height(x->left), height(x->right))+1;

y->height = max(height(y->left), height(y->right))+1;

// Return new root

return y;

}

void BSTNode::DeleteChild(std::shared_ptr<BSTNode> v) {

if (left_ == v) {

left_ = nullptr;

} else if (right_ == v) {

right_ = nullptr;

} else {

std::cerr << "BSTNode::DeleteChild Error: non-child passed as argument ";

exit(EXIT_FAILURE);

}

}

void BSTNode::ReplaceChild(std::shared_ptr<BSTNode> v, std::shared_ptr<BSTNode> u) {

if (left_ == u || right_ == u) {

std::cerr << "BSTNode::ReplaceChild Error: child passed as replacement ";

}

if (left_ == v) {

left_ = u;

u->parent_ = v->parent_;

} else if (right_ == v) {

right_ = u;

u->parent_ = v->parent_;

} else {

std::cerr << "BSTNode::ReplaceChild Error: non-child passed as argument ";

exit(EXIT_FAILURE);

}

}

BST::BST() : root_(nullptr), size_(0) {}

int BST::getBalance(std::shared_prt<BSTNode> N){

if (N == NULL)

return 0;

return height(N->left) - height(N->right);

}

int BST::height(std::shared_ptr<BSTNODE> N){

int t;

if (N == NULL)

return -1;

else

{

t = p->height;

return t;

}

}

void BST::Insert(int key) {

if (root_ == nullptr) {

root_ = std::make_shared<BSTNode>(key);

size_++;

return;

}

std::shared_ptr<BSTNode> currentNode = root_, lastNode = nullptr;

while (currentNode != nullptr) {

lastNode = currentNode;

currentNode = (key < currentNode->key_) ?

currentNode->left_ : currentNode->right_;

}

if (key < lastNode->key_) {

lastNode->left_ = std::make_shared<BSTNode>(key, lastNode);

}

else {

lastNode->right_ = std::make_shared<BSTNode>(key, lastNode);

}

size_++;

//Starting from w, travel up and find the first unbalanced node.

// Let z be the first unbalanced node, y be the child of z that comes on the path

//from w to z and x be the grandchild of z that comes on the path from w to z.

int balance = getBalance(lastNode);  

if(balance!=-1 || balance!=1 || balance!=0){

Balance(lastNode);

}

bool BST::Delete(int key) {

std::shared_ptr<BSTNode> currentNode = root_;

while (currentNode != nullptr) {

if (currentNode->key_ == key) {

if (currentNode->IsLeaf()) {

DeleteLeaf(currentNode);

} else if (currentNode->left_ == nullptr) {

assert(currentNode->right_ != nullptr);

std::shared_ptr<BSTNode> parent = currentNode->parent_.lock();

parent->ReplaceChild(currentNode, currentNode->right_);

size_--; assert(size_ >= 0);

} else if (currentNode->right_ == nullptr) {

assert(currentNode->left_ != nullptr);

std::shared_ptr<BSTNode> parent = currentNode->parent_.lock();

parent->ReplaceChild(currentNode, currentNode->left_);

size_--; assert(size_ >= 0);

} else {

currentNode->key_ = DeleteMin(currentNode);

}

}

currentNode = (key < currentNode->key_) ?

currentNode->left_ : currentNode->right_;

}

return false;

while(lastNode!=root_){

balance=getBalance(lastNode);

  

Balance(lastNode);

  

}

}

Explanation / Answer

#include<stdio.h>
#include<stdlib.h>

// An AVL tree node
struct Node
{
int key;
struct Node *left;
struct Node *right;
int height;
};

// A utility function to get maximum of two integers
int max(int a, int b);

// A utility function to get height of the tree
int height(struct Node *N)
{
if (N == NULL)
return 0;
return N->height;
}

// A utility function to get maximum of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}

/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct Node* newNode(int key)
{
struct Node* node = (struct Node*)
malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially added at leaf
return(node);
}

// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct Node *rightRotate(struct Node *y)
{
struct Node *x = y->left;
struct Node *T2 = x->right;

// Perform rotation
x->right = y;
y->left = T2;

// Update heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;

// Return new root
return x;
}

// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct Node *leftRotate(struct Node *x)
{
struct Node *y = x->right;
struct Node *T2 = y->left;

// Perform rotation
y->left = x;
x->right = T2;

// Update heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;

// Return new root
return y;
}

// Get Balance factor of node N
int getBalance(struct Node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}

// Recursive function to insert key in subtree rooted
// with node and returns new root of subtree.
struct Node* insert(struct Node* node, int key)
{
/* 1. Perform the normal BST insertion */
if (node == NULL)
return(newNode(key));

if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys are not allowed in BST
return node;

/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));

/* 3. Get the balance factor of this ancestor
node to check whether this node became
unbalanced */
int balance = getBalance(node);

// If this node becomes unbalanced, then
// there are 4 cases

// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);

// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);

// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}

// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}

/* return the (unchanged) node pointer */
return node;
}

// A utility function to print preorder traversal
// of the tree.
// The function also prints height of every node
void preOrder(struct Node *root)
{
if(root != NULL)
{
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}

/* Drier program to test above function*/
int main()
{
struct Node *root = NULL;

/* Constructing tree given in the above figure */
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);

/* The constructed AVL Tree would be
30
/
20 40
/
10 25 50
*/

printf("Preorder traversal of the constructed AVL"
" tree is ");
preOrder(root);

return 0;
}
Run on IDE

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote