Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

#5. Calculate 74 16 divided by 21 16 following the example below, and using a si

ID: 3723202 • Letter: #

Question

#5. Calculate 7416 divided by 2116 following the example below, and using a similar table

Example:

Remainde Ste Intial values Quotient Divisor Iteration 0 1 0000 0010 0000 0000 0111 Rem-Div 1: Rem 2b: Rem +Div, shift left logical Quotient, Q0 0000 0000 0111 3: Shift Div Right 1: Rem 2b: Rem +Div, shift left logical Quotient, Q0 = 0001 0000 2 Rem-Div 0000 0111 : Shift Div Right 1: Rem = Rem-Div 2b: Rem +Div, shift left logical Quotient, Q0 = 0000 1000 3 0000 0111 3: Shift Div Right 0000 0100 4 1: Rem Rem - Div 0000 0011 2:a: Rem >= 0 => Shift left logical Quotient, Q0-1 0001 : Shift Div Right 11: Rem 2:a: Rem >= 0 => Shift left Quotient, Q0 = 1 0000 0010 5 Rem-Div 0000 0001 0011 : Shift Div Right 0000 0001 final state 0011 0000 0001 0000 0001

Explanation / Answer

Iteration

Steps

Quotient

Divisor

Remainder

0

Initial Steps

0000

0000 1000 0100 0100

0001 1100 1111 1000

1

Rem = Rem - Div

0001 0100 1011 0100

Rem >0 shift Q0 by 1

0001

Shift Div to right

0000 0100 0010 0010

2

Rem = Rem - Div

0001 0000 1001 0010

Rem >0 shift Q0 by 1

0011

Shift Div to right

0000 0010 0001 0001

3

Rem = Rem - Div

0000 1110 1000 0001

Rem >0 shift Q0 by 1

0111

Shift Div to right

0000 0001 0000 0000

4

Rem = Rem - Div

0000 1101 1000 0001

Rem >0 shift Q0 by 1

1111

Shift Div to right

0000 0000 1000 0000

5

Rem = Rem - Div

0000 1101 0000 0001

Rem >0 shift Q0 by 1

0001 1111

Shift Div to right

0000 0000 0100 0000

6

Rem = Rem - Div

0000 1100 1100 0001

Rem >0 shift Q0 by 1

0011 1111

Shift Div to right

0000 0000 0010 0000

7

Rem = Rem - Div

0000 1100 1010 0001

Rem >0 shift Q0 by 1

0111 1111

Shift Div to right

0000 0000 0001 0000

8

Rem = Rem - Div

0000 1100 1001 0001

Rem >0 shift Q0 by 1

1111 1111

Shift Div to right

0000 0000 0000 1000

9

Rem = Rem - Div

0000 1100 1000 1001

Rem >0 shift Q0 by 1

0001 1111 1111

Shift Div to right

0000 0000 0000 0100

10

Rem = Rem - Div

0000 1100 1000 0101

Rem >0 shift Q0 by 1

0011 1111 1111

Shift Div to right

0000 0000 0000 0010

11

Rem = Rem - Div

0000 1100 1000 0011

Rem >0 shift Q0 by 1

0111 1111 1111

Shift Div to right

0000 0000 0000 0001

Final State

0111 1111 1111

0000 0000 0000 0001

0000 1100 1000 0011

Iteration

Steps

Quotient

Divisor

Remainder

0

Initial Steps

0000

0000 1000 0100 0100

0001 1100 1111 1000

1

Rem = Rem - Div

0001 0100 1011 0100

Rem >0 shift Q0 by 1

0001

Shift Div to right

0000 0100 0010 0010

2

Rem = Rem - Div

0001 0000 1001 0010

Rem >0 shift Q0 by 1

0011

Shift Div to right

0000 0010 0001 0001

3

Rem = Rem - Div

0000 1110 1000 0001

Rem >0 shift Q0 by 1

0111

Shift Div to right

0000 0001 0000 0000

4

Rem = Rem - Div

0000 1101 1000 0001

Rem >0 shift Q0 by 1

1111

Shift Div to right

0000 0000 1000 0000

5

Rem = Rem - Div

0000 1101 0000 0001

Rem >0 shift Q0 by 1

0001 1111

Shift Div to right

0000 0000 0100 0000

6

Rem = Rem - Div

0000 1100 1100 0001

Rem >0 shift Q0 by 1

0011 1111

Shift Div to right

0000 0000 0010 0000

7

Rem = Rem - Div

0000 1100 1010 0001

Rem >0 shift Q0 by 1

0111 1111

Shift Div to right

0000 0000 0001 0000

8

Rem = Rem - Div

0000 1100 1001 0001

Rem >0 shift Q0 by 1

1111 1111

Shift Div to right

0000 0000 0000 1000

9

Rem = Rem - Div

0000 1100 1000 1001

Rem >0 shift Q0 by 1

0001 1111 1111

Shift Div to right

0000 0000 0000 0100

10

Rem = Rem - Div

0000 1100 1000 0101

Rem >0 shift Q0 by 1

0011 1111 1111

Shift Div to right

0000 0000 0000 0010

11

Rem = Rem - Div

0000 1100 1000 0011

Rem >0 shift Q0 by 1

0111 1111 1111

Shift Div to right

0000 0000 0000 0001

Final State

0111 1111 1111

0000 0000 0000 0001

0000 1100 1000 0011