Implement Dijkstra\'s algorithm and Floyd\'s algorithm in JAVA . Dijkstra\'s alg
ID: 3722371 • Letter: I
Question
Implement Dijkstra's algorithm and Floyd's algorithm in JAVA. Dijkstra's algorithm will take an adjacency matrix W, which is a 2-D array, as a parameter. Then the updated algorithm should run Dijkstra’s Algorithm on W n times, once on each vertex 1, 2, …, n . The results should be stored in a second 2-D array “D”, where D[ i ][ j ] is the length of a shortest path from the i th vertex to the j th vertex. Floyd’s algorithm will not require modification and should also return a 2-D array “D”, formatted in the same way.
The graphs used can be hard-coded into the program. After the algorithms have run, let the user ask for the distance between two nodes to verify that it has worked correctly.
Explanation / Answer
// A Java program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph
import java.util.*;
import java.lang.*;
import java.io.*;
class ShortestPath
{
// A utility function to find the vertex with minimum distance value,
// from the set of vertices not yet included in shortest path tree
static final int V=9;
final static int INF = 99999;
static int[][] result1 = new int[V][V];
static int[][] result2 = new int[V][V];
int minDistance(int dist[], Boolean sptSet[])
{
// Initialize min value
int min = Integer.MAX_VALUE, min_index=-1;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
{
min = dist[v];
min_index = v;
}
return min_index;
}
// A utility function to print the constructed distance array
void initializeResultMatrix(int dist[], int n, int src)
{
for (int i = 0; i < V; i++){
result1[src][i] = dist[i];
}
}
// Funtion that implements Dijkstra's single source shortest path
// algorithm for a graph represented using adjacency matrix
// representation
void dijkstra(int graph[][]){
for(int i =0; i< V; i++)
dijkstraAlgorithm(graph, i);
}
void dijkstraAlgorithm(int graph[][], int src)
{
int dist[] = new int[V]; // The output array. dist[i] will hold
// the shortest distance from src to i
// sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized
Boolean sptSet[] = new Boolean[V];
// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++)
{
dist[i] = Integer.MAX_VALUE;
sptSet[i] = false;
}
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V-1; count++)
{
// Pick the minimum distance vertex from the set of vertices
// not yet processed. u is always equal to src in first
// iteration.
int u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent vertices of the
// picked vertex.
for (int v = 0; v < V; v++)
// Update dist[v] only if is not in sptSet, there is an
// edge from u to v, and total weight of path from src to
// v through u is smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v]!=0 &&
dist[u] != Integer.MAX_VALUE &&
dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
// print the constructed distance array
initializeResultMatrix(dist, V, src);
}
void floydWarshall(int graph[][])
{
int dist[][] = new int[V][V];
int i, j, k;
/* Initialize the solution matrix same as input graph matrix.
Or we can say the initial values of shortest distances
are based on shortest paths considering no intermediate
vertex. */
for (i = 0; i < V; i++)
for (j = 0; j < V; j++){
if(graph[i][j] == 0 && i!=j)
dist[i][j] = INF;
else
dist[i][j] = graph[i][j];
}
/* Add all vertices one by one to the set of intermediate
vertices.
---> Before start of a iteration, we have shortest
distances between all pairs of vertices such that
the shortest distances consider only the vertices in
set {0, 1, 2, .. k-1} as intermediate vertices.
----> After the end of a iteration, vertex no. k is added
to the set of intermediate vertices and the set
becomes {0, 1, 2, .. k} */
for (k = 0; k < V; k++)
{
// Pick all vertices as source one by one
for (i = 0; i < V; i++)
{
// Pick all vertices as destination for the
// above picked source
for (j = 0; j < V; j++)
{
// If vertex k is on the shortest path from
// i to j, then update the value of dist[i][j]
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
//initializing the result of floyd
result2 = dist;
}
// Driver method
public static void main (String[] args)
{
/* Let us create the example graph discussed above */
int graph[][] = new int[][]{{0, 4, 0, 0, 0, 0, 0, 8, 0},
{4, 0, 8, 0, 0, 0, 0, 11, 0},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, 0, 0, 9, 0, 10, 0, 0, 0},
{0, 0, 4, 14, 10, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 2, 0, 1, 6},
{8, 11, 0, 0, 0, 0, 1, 0, 7},
{0, 0, 2, 0, 0, 0, 6, 7, 0}
};
ShortestPath t = new ShortestPath();
t.dijkstra(graph);
System.out.println("dijkstra");
for (int i=0; i<V; i++){
for (int j =0; j<V; j++)
System.out.print(result1[i][j] + " ");
System.out.println("");
}
t.floydWarshall(graph);
System.out.println("floydWarshall");
for (int i=0; i<V; i++){
for (int j =0; j<V; j++)
System.out.print(result2[i][j] + " ");
System.out.println("");
}
Scanner reader = new Scanner(System.in); // Reading from System.in
System.out.println("Enter a start node: ");
int n = reader.nextInt();
System.out.println("Enter a end node: ");
int m = reader.nextInt();
System.out.println("shortest distance according to dijkstra :" + result1[n][m]);
System.out.println("shortest distance according to floydWarshall :" + result2[n][m]);
}
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.