I am getting an error saying term does not evaluate to a function taking 2 argum
ID: 3720999 • Letter: I
Question
I am getting an error saying term does not evaluate to a function taking 2 arguments in file xutility line 1062. I am unsure what this means, but could it be from using push_back to make the 2D vector
#include
#include
#include
#include
#include
using namespace std;
int main()
{
//Extract data from two txt files and create initial vector
vector Adata;
vector Bdata;
int i = 0;
// get A data into a vector
ifstream in("ecg_1.txt"); // change it to other file name if you want. but make sure you have input.txt to test this program
if (in.is_open()) {
int num;
while (in >> num) { // to read numbers
Adata.push_back(num); // add to vector
}
}
cout << endl;
in.close(); // close file
// get B data into a vector
ifstream aa("ecg_2.txt"); // change it to other file name if you want. but make sure you have input.txt to test this program
if (aa.is_open()) {
int num;
while (aa >> num) { // to read numbers
Bdata.push_back(num); // add to vector
}
}
cout << endl;
aa.close(); // close file
// put data into a 2D ditance matrix
vector > Distance_M;
Distance_M[0][0] = 0;
Distance_M.resize(51, vector(51));
for (int i = 0; i < 50; i++) {
Distance_M[0][i + 1] = Adata[i];
}
for (int j = 0; j < 50; j++) {
Distance_M[j + 1][0] = Adata[j];
}
for (int i = 1; i < 50; i++) {
for (int j = 1; j < 50; j++) {
Distance_M[i][j] = abs(Adata[i] - Bdata[j]) + min(Distance_M[i - 1][j - 1], Distance_M[i - 1][j], Distance_M[i][j - 1]);
}
}
// Finding the allignment
vector a_points;
vector b_points;
vector allignment;
int l = 50;
int k = 50;
int x = 50;
int y = 50;
while (l > 1 && k > 1) {
// Minimum point is to the left
if ((Distance_M[x - 1][y] > Distance_M[x - 1][y - 1]) && (Distance_M[x - 1][y] > Distance_M[x][y - 1]))
int l = l - 1;
int x = x - 1;
a_points.push_back(l);
b_points.push_back(k);
allignment.push_back(Distance_M[x][y]);
// Minimum point is to the down left and right
if ((Distance_M[x - 1][y - 1] > Distance_M[x - 1][y]) && (Distance_M[x - 1][y - 1] > Distance_M[x][y - 1]))
int l = l - 1;
k = k - 1;
x = x - 1;
y = y - 1;
a_points.push_back(l);
b_points.push_back(k);
allignment.push_back(Distance_M[x][y]);
// Minimum point is to the bottom
if ((Distance_M[x][y - 1] > Distance_M[x - 1][y - 1]) && (Distance_M[x][y - 1] > Distance_M[x - 1][y]))
k = k - 1;
y = y - 1;
a_points.push_back(l);
b_points.push_back(k);
allignment.push_back(Distance_M[x][y]);
}
// Plot sets A and B
// Plot every allignment
// Will be from a_points to b_points but starting from back so be careful
}
Explanation / Answer
#include #include #include #include #include using namespace std; int main() { //Extract data from two txt files and create initial vector vector Adata; vector Bdata; int i = 0; // get A data into a vector ifstream in("ecg_1.txt"); // change it to other file name if you want. but make sure you have input.txt to test this program if (in.is_open()) { int num; while (in >> num) { // to read numbers Adata.push_back(num); // add to vector } } cout num) { // to read numbers Bdata.push_back(num); // add to vector } } cout 1) { // Minimum point is to the left if ((Distance_M[x - 1][y] > Distance_M[x - 1][y - 1]) && (Distance_M[x - 1][y] > Distance_M[x][y - 1])) { l = l - 1; x = x - 1; a_points.push_back(l); b_points.push_back(k); allignment.push_back(Distance_M[x][y]); // Minimum point is to the down left and right if ((Distance_M[x - 1][y - 1] > Distance_M[x - 1][y]) && (Distance_M[x - 1][y - 1] > Distance_M[x][y - 1])) l = l - 1; k = k - 1; x = x - 1; y = y - 1; a_points.push_back(l); b_points.push_back(k); allignment.push_back(Distance_M[x][y]); // Minimum point is to the bottom if ((Distance_M[x][y - 1] > Distance_M[x - 1][y - 1]) && (Distance_M[x][y - 1] > Distance_M[x - 1][y])) k = k - 1; y = y - 1; a_points.push_back(l); b_points.push_back(k); allignment.push_back(Distance_M[x][y]); } // Plot sets A and B // Plot every allignment // Will be from a_points to b_points but starting from back so be careful } }Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.