Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

JAVA QUESTION An airport has two concourses. Concourse I passengers arrive at a

ID: 3702830 • Letter: J

Question

JAVA QUESTION

An airport has two concourses. Concourse I passengers arrive at a rate of one every 15 ± 2 seconds. Concourse 2 passengers arrive at a rate of one every 10 ± 5 seconds. It takes 30 ± 5 seconds to walk down concourse I and 35 ± 10 seconds to walk down concourse 2. Both concourses empty into the main lobby, adjacent to the baggage claim. It takes 10 ± 3 seconds to reach the baggage claim area from the main lobby. Only 60% of the passengers go to the baggage claim area. Simulate the passage of 500 passengers through the airport system. How many of these passengers went through the baggage claim area? In this problem, the expected number through the baggage claim area can be computed by 0.60(500)=300. How close is the simulation estimate to the expected number? Why the difference if a difference exists?

Explanation / Answer

As per give question we are programming language in Java

Rate of one every 15 ± 2 seconds. Rate of one every 10 ± 5 seconds. It takes 30 ± 5 seconds.

We are simulate 500 samples from Bernoulli distribution with success probability is 0.6 samples are

X

1 1

2 1

3 1

4 0

5 1

6 1

7 0

8 1

9 1

10 0

11 1

12 1

13 1

14 0

15 0

16 1

17 1

18 1

19 1

20 0

21 1

22 1

23 0

24 1

25 0

26 0

27 0

28 0

29 1

30 0

31 0

32 0

33 0

34 1

35 0

36 0

37 0

38 1

39 1

40 1

41 1

42 1

43 0

44 0

45 1

46 0

47 0

48 0

49 1

50 1

51 1

52 1

53 1

54 0

55 1

56 1

57 0

58 0

59 0

60 1

61 0

62 0

63 0

64 0

65 1

66 1

67 1

68 0

69 0

70 1

71 0

72 0

73 1

74 1

75 1

76 1

77 0

78 0

79 1

80 1

81 0

82 0

83 1

84 0

85 1

86 1

87 1

88 1

89 0

90 0

91 0

92 0

93 1

94 0

95 1

96 1

97 0

98 1

99 1

100 0

101 1

102 1

103 0

104 1

105 0

106 1

107 1

108 1

109 0

110 1

111 1

112 0

113 1

114 1

115 0

116 0

117 1

118 1

119 1

120 1

121 1

122 1

123 1

124 0

125 1

126 1

127 1

128 1

129 1

130 1

131 0

132 1

133 0

134 1

135 1

136 1

137 0

138 0

139 1

140 1

141 1

142 0

143 0

144 1

145 1

146 0

147 0

148 0

149 1

150 1

151 1

152 0

153 0

154 1

155 0

156 1

157 0

158 1

159 0

160 1

161 0

162 1

163 1

164 1

165 1

166 0

167 0

168 0

169 0

170 1

171 0

172 1

173 0

174 1

175 0

176 1

177 1

178 1

179 0

180 1

181 0

182 0

183 0

184 1

185 1

186 0

187 0

188 0

189 0

190 1

191 0

192 0

193 1

194 0

195 0

196 0

197 0

198 1

199 1

200 1

201 0

202 0

203 1

204 1

205 0

206 1

207 1

208 1

209 1

210 1

211 0

212 1

213 1

214 1

215 1

216 1

217 0

218 1

219 0

220 1

221 1

222 1

223 1

224 1

225 1

226 0

227 0

228 1

229 1

230 1

231 1

232 1

233 0

234 1

235 1

236 0

237 1

238 1

239 1

240 1

241 0

242 1

243 0

244 1

245 0

246 1

247 1

248 0

249 0

250 0

251 1

252 0

253 0

254 1

255 0

256 0

257 1

258 0

259 1

260 0

261 1

262 0

263 1

264 1

265 0

266 1

267 1

268 0

269 1

270 1

271 0

272 0

273 1

274 1

275 1

276 0

277 1

278 0

279 1

280 0

281 1

282 0

283 1

284 1

285 1

286 0

287 0

288 0

289 1

290 0

291 1

292 0

293 1

294 1

295 0

296 1

297 1

298 1

299 1

300 1

301 1

302 1

303 1

304 1

305 1

306 1

307 1

308 1

309 0

310 0

311 1

312 0

313 1

314 0

315 0

316 0

317 0

318 1

319 0

320 1

321 0

322 1

323 0

324 0

325 1

326 1

327 0

328 0

329 1

330 0

331 1

332 0

333 1

334 1

335 1

336 1

337 1

338 0

339 1

340 1

341 1

342 1

343 1

344 1

345 1

346 1

347 0

348 0

349 0

350 1

351 0

352 0

353 1

354 0

355 1

356 0

357 1

358 1

359 0

360 0

361 1

362 1

363 0

364 1

365 1

366 0

367 0

368 1

369 1

370 0

371 1

372 0

373 0

374 0

375 1

376 0

377 1

378 1

379 1

380 1

381 0

382 1

383 1

384 1

385 1

386 1

387 1

388 0

389 1

390 0

391 1

392 1

393 1

394 1

395 1

396 0

397 0

398 0

399 0

400 1

401 1

402 0

403 0

404 1

405 1

406 1

407 1

408 1

409 1

410 1

411 0

412 1

413 0

414 0

415 0

416 0

417 1

418 1

419 1

420 1

421 1

422 1

423 1

424 1

425 0

426 1

427 0

428 0

429 1

430 0

431 1

432 1

433 0

434 1

435 0

436 1

437 0

438 1

439 0

440 1

441 1

442 0

443 1

444 1

445 0

446 1

447 1

448 0

449 0

450 0

451 0

452 0

453 1

454 0

455 1

456 0

457 1

458 1

459 1

460 0

461 0

462 1

463 1

464 0

465 0

466 1

467 1

468 1

469 1

470 1

471 1

472 1

473 0

474 0

475 1

476 1

477 1

478 0

479 0

480 0

481 1

482 1

483 0

484 1

485 0

486 1

487 0

488 1

489 1

490 1

491 0

492 0

493 0

494 1

495 1

496 0

497 0

498 1

499 0

500 1

Therefore total sum of sample is 291

Hence the proportion in sample is 291/500=0.582

We will find in terms of proportion in sample how much to be expect that is why we have to find 95% confidence interval of the sample proportion using estimate of 0.582

We get the 95% confidence interval is (0.5794977, 0.6645023)

Therefore it is expect from the sample

As per give question we are programming language in Java

Rate of one every 15 ± 2 seconds. Rate of one every 10 ± 5 seconds. It takes 30 ± 5 seconds.

We are simulate 500 samples from Bernoulli distribution with success probability is 0.6 samples are

X

1 1

2 1

3 1

4 0

5 1

6 1

7 0

8 1

9 1

10 0

11 1

12 1

13 1

14 0

15 0

16 1

17 1

18 1

19 1

20 0

21 1

22 1

23 0

24 1

25 0

26 0

27 0

28 0

29 1

30 0

31 0

32 0

33 0

34 1

35 0

36 0

37 0

38 1

39 1

40 1

41 1

42 1

43 0

44 0

45 1

46 0

47 0

48 0

49 1

50 1

51 1

52 1

53 1

54 0

55 1

56 1

57 0

58 0

59 0

60 1

61 0

62 0

63 0

64 0

65 1

66 1

67 1

68 0

69 0

70 1

71 0

72 0

73 1

74 1

75 1

76 1

77 0

78 0

79 1

80 1

81 0

82 0

83 1

84 0

85 1

86 1

87 1

88 1

89 0

90 0

91 0

92 0

93 1

94 0

95 1

96 1

97 0

98 1

99 1

100 0

101 1

102 1

103 0

104 1

105 0

106 1

107 1

108 1

109 0

110 1

111 1

112 0

113 1

114 1

115 0

116 0

117 1

118 1

119 1

120 1

121 1

122 1

123 1

124 0

125 1

126 1

127 1

128 1

129 1

130 1

131 0

132 1

133 0

134 1

135 1

136 1

137 0

138 0

139 1

140 1

141 1

142 0

143 0

144 1

145 1

146 0

147 0

148 0

149 1

150 1

151 1

152 0

153 0

154 1

155 0

156 1

157 0

158 1

159 0

160 1

161 0

162 1

163 1

164 1

165 1

166 0

167 0

168 0

169 0

170 1

171 0

172 1

173 0

174 1

175 0

176 1

177 1

178 1

179 0

180 1

181 0

182 0

183 0

184 1

185 1

186 0

187 0

188 0

189 0

190 1

191 0

192 0

193 1

194 0

195 0

196 0

197 0

198 1

199 1

200 1

201 0

202 0

203 1

204 1

205 0

206 1

207 1

208 1

209 1

210 1

211 0

212 1

213 1

214 1

215 1

216 1

217 0

218 1

219 0

220 1

221 1

222 1

223 1

224 1

225 1

226 0

227 0

228 1

229 1

230 1

231 1

232 1

233 0

234 1

235 1

236 0

237 1

238 1

239 1

240 1

241 0

242 1

243 0

244 1

245 0

246 1

247 1

248 0

249 0

250 0

251 1

252 0

253 0

254 1

255 0

256 0

257 1

258 0

259 1

260 0

261 1

262 0

263 1

264 1

265 0

266 1

267 1

268 0

269 1

270 1

271 0

272 0

273 1

274 1

275 1

276 0

277 1

278 0

279 1

280 0

281 1

282 0

283 1

284 1

285 1

286 0

287 0

288 0

289 1

290 0

291 1

292 0

293 1

294 1

295 0

296 1

297 1

298 1

299 1

300 1

301 1

302 1

303 1

304 1

305 1

306 1

307 1

308 1

309 0

310 0

311 1

312 0

313 1

314 0

315 0

316 0

317 0

318 1

319 0

320 1

321 0

322 1

323 0

324 0

325 1

326 1

327 0

328 0

329 1

330 0

331 1

332 0

333 1

334 1

335 1

336 1

337 1

338 0

339 1

340 1

341 1

342 1

343 1

344 1

345 1

346 1

347 0

348 0

349 0

350 1

351 0

352 0

353 1

354 0

355 1

356 0

357 1

358 1

359 0

360 0

361 1

362 1

363 0

364 1

365 1

366 0

367 0

368 1

369 1

370 0

371 1

372 0

373 0

374 0

375 1

376 0

377 1

378 1

379 1

380 1

381 0

382 1

383 1

384 1

385 1

386 1

387 1

388 0

389 1

390 0

391 1

392 1

393 1

394 1

395 1

396 0

397 0

398 0

399 0

400 1

401 1

402 0

403 0

404 1

405 1

406 1

407 1

408 1

409 1

410 1

411 0

412 1

413 0

414 0

415 0

416 0

417 1

418 1

419 1

420 1

421 1

422 1

423 1

424 1

425 0

426 1

427 0

428 0

429 1

430 0

431 1

432 1

433 0

434 1

435 0

436 1

437 0

438 1

439 0

440 1

441 1

442 0

443 1

444 1

445 0

446 1

447 1

448 0

449 0

450 0

451 0

452 0

453 1

454 0

455 1

456 0

457 1

458 1

459 1

460 0

461 0

462 1

463 1

464 0

465 0

466 1

467 1

468 1

469 1

470 1

471 1

472 1

473 0

474 0

475 1

476 1

477 1

478 0

479 0

480 0

481 1

482 1

483 0

484 1

485 0

486 1

487 0

488 1

489 1

490 1

491 0

492 0

493 0

494 1

495 1

496 0

497 0

498 1

499 0

500 1

Therefore total sum of sample is 291

Hence the proportion in sample is 291/500=0.582

We will find in terms of proportion in sample how much to be expect that is why we have to find 95% confidence interval of the sample proportion using estimate of 0.582

We get the 95% confidence interval is (0.5794977, 0.6645023)

Therefore it is expect from the sample