PLEASE HELP ME FIGURE OUT THIS CODE i really need help with this. I need help fi
ID: 3702764 • Letter: P
Question
PLEASE HELP ME FIGURE OUT THIS CODE i really need help with this. I need help figuring out how to solve the errors.
This is my code and need help revising it. PLEASE just revise my code.
#include<stdio.h>
#include <math.h>
double sum(double x[], double y[], int n);
double r(double x[], double y[], int n, double a, double b);
float func(float x,float y);
float euler(float x0,float xn,float y0,int n);
int main(){
double x[]={2,3};
double y[]={3};
double one[]={1,1};
float x0,xn,y0,e;
int n=2;
double x0=2;
double sumx, sumy,sumxx,sumxy;
double a,b;
sumx=sum(x,one,n);
sumy=sum(y,one,n);
sumxx=sum(x,x,n);
sumxy=sum(x,y,n);
a=(n*sumxy-sumx*sumy)/(n*sumxx-sumx*sumx);
b=(sumy*sumxx-sumx*sumxy)/(n*sumxx-sumx*sumx);
printf(" By linear regression, the function is: y=%fx+%f ",a,b);
printf(" When x= %f, y= %f ",x0,a*x0+b);
printf(" r = %f ",r(x,y,n,a,b));
return 0;
}
double sum(double x[],double y[], int n){
double s=0.0;int i=0;
for (i=0;i<n;i++)
s=s+x[i]*y[i];
return s;
}
double r(double x[],double y[], int n, double a, double b){
double s0=0,s=0,ybar=0,total=0;
int i=0;
for (i=0;i<n;i++){
total+=y[i];
}
ybar=total/n;
for (i=0;i<n;i++){
s0+=pow((y[i]-ybar),2);
s+=pow((y[i]-b-a*x[i]),2);
}
return pow((s0-s)/s0,0.5);
}
printf(" inputn: ");
scanf("%d",&n);
printf("input x0: ");
scanf("%f",&x0);
printf("input xn: ");
scanf("%f",&xn);
printf("input y0: ");
scanf("%f",&y0);
e=euler(x0,xn,y0,n);
}
}
float func(float x,float y){
return ((x*x)-(3*x));
}
float euler(float x0,float xn,float y0,int n){
float x,y,h;
int i;
x=x0;
y=y0;
h=(xn-x0)/n;
printf("y(%f)=%6.4f ",x0,y0);
for(i=1;i<=n;i++) {y=y+h*func(x,y);
x=x0+i*h;
printf("y(%f)=%6.4f ",x,y);
}
return y;
}
Develop a C-code to meet the requirements below: 1) Find the solution of the differential equation below by using Euler's method. The range of x is 2 to 3. dyldx-x2-3x with y-3 at x-2 Find the appropriate step size for this specific problem 3) Print all the y values within the range of x-2 to x-3. 4) Solve the differential equation analytically and compare with the Euler's method 5) Obtain a linear regression y-ax+b and show the r valueExplanation / Answer
#include<stdio.h>
#include<conio.h>
#include <math.h>
double sum(double [], double [], int n);
/*initialization should be done like this. should not specify the variable names in the function declaration part*/
double r(double [], double [], int , double , double );
float func(float ,float );
float euler(float ,float ,float ,int );
int main(){
double x[]={2,3};
double y[]={3};
double one[]={1,1};
float xn,yo,e;
int n=2;
double x0=2;
double sumx, sumy,sumxx,sumxy;
double a,b;
sumx=sum(x,one,n);
sumy=sum(y,one,n);
sumxx=sum(x,x,n);
sumxy=sum(x,y,n);
a=(n*sumxy-sumx*sumy)/(n*sumxx-sumx*sumx);
b=(sumy*sumxx-sumx*sumxy)/(n*sumxx-sumx*sumx);
printf(" By linear regression, the function is: y=%fx+%f ",a,b);
printf(" When x= %f, y= %f ",x0,a*x0+b);
printf(" r = %f ",r(x,y,n,a,b));
return 0;
}
double sum(double x[],double y[], int n){
double s=0.0;int i=0;
for (i=0;i<n;i++)
s=s+x[i]*y[i];
return s;
}
double r(double x[],double y[], int n, double a, double b){
double s0=0,s=0,ybar=0,total=0;
int i=0;
for (i=0;i<n;i++){
total+=y[i];
}
ybar=total/n;
for (i=0;i<n;i++){
s0+=pow((y[i]-ybar),2);
s+=pow((y[i]-b-a*x[i]),2);
}
return pow((s0-s)/s0,0.5);
}
/* printf(" inputn: ");
scanf("%d",&n);
printf("input x0:"); here this code is useless. if you want the read the x0 n xn values from the user dynamically please use this code in main function without reading static data use this code then it will work.
scanf("%f",&x0);
printf("input xn:");
scanf("%f",&xn);
printf("input y0: ");
scanf("%f",&y0);
e=euler(x0,xn,y0,n);
}
}*/
float func(float x,float y){
return ((x*x)-(3*x));
}
float euler(float x0,float xn,float y0,int n){
float x,y,h;
int i;
x=x0;
y=y0;
h=(xn-x0)/n;
printf("y(%f)=%6.4f ",x0,y0);
for(i=1;i<=n;i++) {y=y+h*func(x,y);
x=x0+i*h;
printf("y(%f)=%6.4f ",x,y);
}
return y;
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.