Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

#define H_LinkedListType #include <iostream> #include <cassert> using namespace

ID: 3702126 • Letter: #

Question

#define H_LinkedListType

#include <iostream>

#include <cassert>

using namespace std;

//Definition of the node

template <class Type>

struct nodeType

{

Type info;

nodeType<Type> *link;

};

template <class Type>

class linkedListIterator

{

public:

linkedListIterator();

//Default constructor

//Postcondition: current = nullptr;

linkedListIterator(nodeType<Type> *ptr);

//Constructor with a parameter.

//Postcondition: current = ptr;

Type operator*();

//Function to overload the dereferencing operator *.

//Postcondition: Returns the info contained in the node.

linkedListIterator<Type> operator++();

//Overload the pre-increment operator.

//Postcondition: The iterator is advanced to the next

//               node.

bool operator==(const linkedListIterator<Type>& right) const;

//Overload the equality operator.

//Postcondition: Returns true if this iterator is equal to

//               the iterator specified by right,

//               otherwise it returns the value false.

bool operator!=(const linkedListIterator<Type>& right) const;

//Overload the not equal to operator.

//Postcondition: Returns true if this iterator is not

//               equal to the iterator specified by

//               right; otherwise it returns the value

//               false.

private:

nodeType<Type> *current; //pointer to point to the current

//node in the linked list

};

template <class Type>

linkedListIterator<Type>::linkedListIterator()

{

current = nullptr;

}

template <class Type>

linkedListIterator<Type>::

linkedListIterator(nodeType<Type> *ptr)

{

current = ptr;

}

template <class Type>

Type linkedListIterator<Type>::operator*()

{

return current->info;

}

template <class Type>

linkedListIterator<Type> linkedListIterator<Type>::

operator++()

{

current = current->link;

return *this;

}

template <class Type>

bool linkedListIterator<Type>::operator==

(const linkedListIterator<Type>& right) const

{

return (current == right.current);

}

template <class Type>

bool linkedListIterator<Type>::operator!=

(const linkedListIterator<Type>& right) const

{    return (current != right.current);

}

//***************** class linkedListType   ****************

template <class Type>

class linkedListType

{

public:

const linkedListType<Type>& operator=

(const linkedListType<Type>&);

//Overload the assignment operator.

void initializeList();

//Initialize the list to an empty state.

//Postcondition: first = nullptr, last = nullptr,

//               count = 0;

bool isEmptyList() const;

//Function to determine whether the list is empty.

//Postcondition: Returns true if the list is empty,

//               otherwise it returns false.

void print() const;

//Function to output the data contained in each node.

//Postcondition: none

int length() const;

//Function to return the number of nodes in the list.

//Postcondition: The value of count is returned.

void destroyList();

//Function to delete all the nodes from the list.

//Postcondition: first = nullptr, last = nullptr,

//               count = 0;

Type front() const;

//Function to return the first element of the list.

//Precondition: The list must exist and must not be

//              empty.

//Postcondition: If the list is empty, the program

//               terminates; otherwise, the first

//               element of the list is returned.

Type back() const;

//Function to return the last element of the list.

//Precondition: The list must exist and must not be

//              empty.

//Postcondition: If the list is empty, the program

//               terminates; otherwise, the last

//               element of the list is returned.

virtual bool search(const Type& searchItem) const = 0;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the

//               list, otherwise the value false is

//               returned.

virtual void insertFirst(const Type& newItem) = 0;

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

//               inserted at the beginning of the list,

//               last points to the last node in the list,

//               and count is incremented by 1.

virtual void insertLast(const Type& newItem) = 0;

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem

//               is inserted at the end of the list,

//               last points to the last node in the

//               list, and count is incremented by 1.

virtual void deleteNode(const Type& deleteItem) = 0;

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing

//               deleteItem is deleted from the list.

//               first points to the first node, last

//               points to the last node of the updated

//               list, and count is decremented by 1.

linkedListIterator<Type> begin();

//Function to return an iterator at the begining of

//the linked list.

//Postcondition: Returns an iterator such that current

//               is set to first.

linkedListIterator<Type> end();

//Function to return an iterator one element past the

//last element of the linked list.

//Postcondition: Returns an iterator such that current

//               is set to nullptr.

linkedListType();

//Default constructor

//Initializes the list to an empty state.

//Postcondition: first = nullptr, last = nullptr,

//               count = 0;

linkedListType(const linkedListType<Type>& otherList);

//copy constructor

~linkedListType();

//Destructor

//Deletes all the nodes from the list.

//Postcondition: The list object is destroyed.

protected:

int count;   //variable to store the number of

//elements in the list

nodeType<Type> *first; //pointer to the first node of the list

nodeType<Type> *last; //pointer to the last node of the list

private:

void copyList(const linkedListType<Type>& otherList);

//Function to make a copy of otherList.

//Postcondition: A copy of otherList is created and

//               assigned to this list.

};

template <class Type>

bool linkedListType<Type>::isEmptyList() const

{

return (first == nullptr);

}

template <class Type>

linkedListType<Type>::linkedListType() //default constructor

{

first = nullptr;

last = nullptr;

count = 0;

}

template <class Type>

void linkedListType<Type>::destroyList()

{

nodeType<Type> *temp;   //pointer to deallocate the memory

//occupied by the node

while (first != nullptr)   //while there are nodes in

{                          //the list

temp = first;        //set temp to the current node

first = first->link; //advance first to the next node

delete temp;   //deallocate the memory occupied by temp

}

last = nullptr; //initialize last to nullptr; first has

//already been set to nullptr by the while loop

count = 0;

}

template <class Type>

void linkedListType<Type>::initializeList()

{

destroyList(); //if the list has any nodes, delete them

}

template <class Type>

void linkedListType<Type>::print() const

{

nodeType<Type> *current; //pointer to traverse the list

current = first;    //set current so that it points to

//the first node

while (current != nullptr) //while more data to print

{

cout << current->info << " ";

current = current->link;

}

}//end print

template <class Type>

int linkedListType<Type>::length() const

{

return count;

} //end length

template <class Type>

Type linkedListType<Type>::front() const

{

assert(first != nullptr);

return first->info; //return the info of the first node

}//end front

template <class Type>

Type linkedListType<Type>::back() const

{

assert(last != nullptr);

return last->info; //return the info of the last node

}//end back

template <class Type>

linkedListIterator<Type> linkedListType<Type>::begin()

{

linkedListIterator<Type> temp(first);

return temp;

}

template <class Type>

linkedListIterator<Type> linkedListType<Type>::end()

{

linkedListIterator<Type> temp(nullptr);

return temp;

}

template <class Type>

void linkedListType<Type>::copyList

(const linkedListType<Type>& otherList)

{

nodeType<Type> *newNode; //pointer to create a node

nodeType<Type> *current; //pointer to traverse the list

if (first != nullptr) //if the list is nonempty, make it empty

destroyList();

if (otherList.first == nullptr) //otherList is empty

{

first = nullptr;

last = nullptr;

count = 0;

}

else

{

current = otherList.first; //current points to the

//list to be copied

count = otherList.count;

//copy the first node

first = new nodeType<Type>; //create the node

first->info = current->info; //copy the info

first->link = nullptr;        //set the link field of

//the node to nullptr

last = first;              //make last point to the

//first node

current = current->link;     //make current point to

//the next node

//copy the remaining list

while (current != nullptr)

{

newNode = new nodeType<Type>; //create a node

newNode->info = current->info; //copy the info

newNode->link = nullptr;       //set the link of

//newNode to nullptr

last->link = newNode; //attach newNode after last

last = newNode;        //make last point to

//the actual last node

current = current->link;   //make current point

//to the next node

}//end while

}//end else

}//end copyList

template <class Type>

linkedListType<Type>::~linkedListType() //destructor

{

destroyList();

}//end destructor

template <class Type>

linkedListType<Type>::linkedListType

(const linkedListType<Type>& otherList)

{

first = nullptr;

copyList(otherList);

}//end copy constructor

//overload the assignment operator

template <class Type>

const linkedListType<Type>& linkedListType<Type>::operator=

(const linkedListType<Type>& otherList)

{

if (this != &otherList) //avoid self-copy

{

copyList(otherList);

}//end else

return *this;

}

#endif

Extend the class linkeduistlype by adding the following operations: 1 Find and delete the node with the smallest info in the list. Delete only the 2 first occurrence and traverse the list only once. Find and delete all occurrences of a given into in the list. Traverse the list only once. Add these abstraction functions in the linkedListType class and then provide the definition in the unorderedlinkedList class. Write test code to test your added functions.

Explanation / Answer

Answer :

//LinkedList.h - defines a linked list

#include <iostream>

using namespace std;

template<class T>
struct nodeType
{
T info; //some arb data - eg to contain a pointer to a class
nodeType<T> *link;
};

template <class T>
class linkedListType
{
public:
void initializeList();
//function to initialize first element in list to zero
//postcondition: first=NULL last=NULL

bool isEmpty();
//function to see if list contains elements

int Length();
//function to return the number of elements initialized in the list

T firstItem();
//function to return the first item in the list

T lastItem();
//function to return the last item in the list

void appendItem(const T& newItem);
//function to append an item to the list

linkedListType();
//constructor

~linkedListType();
//destructor

protected:
nodeType<T> *first; //pointer to first node
nodeType<T> *last; //pointer to last node
int count; //stores number of items in the list
};

template<class T>
bool linkedListType<T>::isEmpty()
{
return(first==NULL);
}

template<class T>
linkedListType<T>::linkedListType()
{
first=NULL;
last=NULL;
count=0;
}
template<class T>
linkedListType<T>::~linkedListType()
{
nodeType<T> *temp;

while(first!=NULL)
{
temp=first;
first=first->link;
delete temp;
}
last=NULL;
count=0;
}

template<class T>
linkedListType<T>::Length()
{
return count;
}
template<class T>
T linkedListType<T>::firstItem()
{
if(!isEmpty())
{
return first->info;
//NB: return the first node's data member eg: return any object
}
else
{
return NULL;
}
}

template<class T>
T linkedListType<T>::lastItem()
{
if(!isEmpty())
{
return last->info;
//NB: return the first node's data member eg: return any object
}
else
{
return NULL;
}
}

template<class T>
void linkedListType<T>::appendItem(const T& newItem)
{
nodeType<T> newNode;
newNode->info=newItem;
last->link=newNode;
last=newNode;
count++;
}