Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Using the implementations of binary search tree (BST.java) and Queue.java from t

ID: 3676256 • Letter: U

Question

Using the implementations of binary search tree (BST.java) and Queue.java from the website of the textbook this is a link to the website http://algs4.cs.princeton.edu/code/ , include a new method printPost() that prints the pairs (key, value) properly labeled that are in the tree in post-order. In addition, write a test client that reads a sequence of (key, value) pairs from a file, inserts them in the symbol table and outputs -on the screen- the values in the tree using the method printPost(). You may assume that keys and values are both of type String.

Explanation / Answer

Hi, I have added postPrint(). Just integrate other .java file and test it.

import java.util.NoSuchElementException;

public class BST<Key extends Comparable<Key>, Value> {
    private Node root;             // root of BST

    private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated data
        private Node left, right; // left and right subtrees
        private int N;             // number of nodes in subtree

        public Node(Key key, Value val, int N) {
            this.key = key;
            this.val = val;
            this.N = N;
        }
    }

    /**
     * Initializes an empty symbol table.
     */
    public BST() {
    }

    /**
     * Returns true if this symbol table is empty.
     * @return <tt>true</tt> if this symbol table is empty; <tt>false</tt> otherwise
     */
    public boolean isEmpty() {
        return size() == 0;
    }

    /**
     * Returns the number of key-value pairs in this symbol table.
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return size(root);
    }

    // return number of key-value pairs in BST rooted at x
    private int size(Node x) {
        if (x == null) return 0;
        else return x.N;
    }

    /**
     * Does this symbol table contain the given key?
     *
     * @param key the key
     * @return <tt>true</tt> if this symbol table contains <tt>key</tt> and
     *         <tt>false</tt> otherwise
     * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
     */
    public boolean contains(Key key) {
        if (key == null) throw new NullPointerException("argument to contains() is null");
        return get(key) != null;
    }

    /**
     * Returns the value associated with the given key.
     *
     * @param key the key
     * @return the value associated with the given key if the key is in the symbol table
     *         and <tt>null</tt> if the key is not in the symbol table
     * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
     */
    public Value get(Key key) {
        return get(root, key);
    }

    private Value get(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) return get(x.left, key);
        else if (cmp > 0) return get(x.right, key);
        else              return x.val;
    }

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting the old
     * value with the new value if the symbol table already contains the specified key.
     * Deletes the specified key (and its associated value) from this symbol table
     * if the specified value is <tt>null</tt>.
     *
     * @param key the key
     * @param val the value
     * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
     */
    public void put(Key key, Value val) {
        if (key == null) throw new NullPointerException("first argument to put() is null");
        if (val == null) {
            delete(key);
            return;
        }
        root = put(root, key, val);
        assert check();
    }

    private Node put(Node x, Key key, Value val) {
        if (x == null) return new Node(key, val, 1);
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) x.left = put(x.left, key, val);
        else if (cmp > 0) x.right = put(x.right, key, val);
        else              x.val   = val;
        x.N = 1 + size(x.left) + size(x.right);
        return x;
    }


    /**
     * Removes the smallest key and associated value from the symbol table.
     *
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
        root = deleteMin(root);
        assert check();
    }

    private Node deleteMin(Node x) {
        if (x.left == null) return x.right;
        x.left = deleteMin(x.left);
        x.N = size(x.left) + size(x.right) + 1;
        return x;
    }

    /**
     * Removes the largest key and associated value from the symbol table.
     *
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
        root = deleteMax(root);
        assert check();
    }

    private Node deleteMax(Node x) {
        if (x.right == null) return x.left;
        x.right = deleteMax(x.right);
        x.N = size(x.left) + size(x.right) + 1;
        return x;
    }

    /**
     * Removes the specified key and its associated value from this symbol table   
     * (if the key is in this symbol table).  
     *
     * @param key the key
     * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
     */
    public void delete(Key key) {
        if (key == null) throw new NullPointerException("argument to delete() is null");
        root = delete(root, key);
        assert check();
    }

    private Node delete(Node x, Key key) {
        if (x == null) return null;

        int cmp = key.compareTo(x.key);
        if      (cmp < 0) x.left = delete(x.left, key);
        else if (cmp > 0) x.right = delete(x.right, key);
        else {
            if (x.right == null) return x.left;
            if (x.left == null) return x.right;
            Node t = x;
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        }
        x.N = size(x.left) + size(x.right) + 1;
        return x;
    }


    /**
     * Returns the smallest key in the symbol table.
     *
     * @return the smallest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");
        return min(root).key;
    }

    private Node min(Node x) {
        if (x.left == null) return x;
        else                return min(x.left);
    }

    /**
     * Returns the largest key in the symbol table.
     *
     * @return the largest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");
        return max(root).key;
    }

    private Node max(Node x) {
        if (x.right == null) return x;
        else                 return max(x.right);
    }

    /**
     * Returns the largest key in the symbol table less than or equal to <tt>key</tt>.
     *
     * @param key the key
     * @return the largest key in the symbol table less than or equal to <tt>key</tt>
     * @throws NoSuchElementException if there is no such key
     * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
     */
    public Key floor(Key key) {
        if (key == null) throw new NullPointerException("argument to floor() is null");
        if (isEmpty()) throw new NoSuchElementException("called floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null) return null;
        else return x.key;
    }

    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0) return floor(x.left, key);
        Node t = floor(x.right, key);
        if (t != null) return t;
        else return x;
    }

    /**
     * Returns the smallest key in the symbol table greater than or equal to <tt>key</tt>.
     *
     * @param key the key
     * @return the smallest key in the symbol table greater than or equal to <tt>key</tt>
     * @throws NoSuchElementException if there is no such key
     * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
     */
    public Key ceiling(Key key) {
        if (key == null) throw new NullPointerException("argument to ceiling() is null");
        if (isEmpty()) throw new NoSuchElementException("called ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null) return null;
        else return x.key;
    }

    private Node ceiling(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0) {
            Node t = ceiling(x.left, key);
            if (t != null) return t;
            else return x;
        }
        return ceiling(x.right, key);
    }

    /**
     * Return the kth smallest key in the symbol table.
     *
     * @param k the order statistic
     * @return the kth smallest key in the symbol table
     * @throws IllegalArgumentException unless <tt>k</tt> is between 0 and
     *        <em>N</em> &minus; 1
     */
    public Key select(int k) {
        if (k < 0 || k >= size()) throw new IllegalArgumentException();
        Node x = select(root, k);
        return x.key;
    }

    // Return key of rank k.
    private Node select(Node x, int k) {
        if (x == null) return null;
        int t = size(x.left);
        if      (t > k) return select(x.left, k);
        else if (t < k) return select(x.right, k-t-1);
        else            return x;
    }

    /**
     * Return the number of keys in the symbol table strictly less than <tt>key</tt>.
     *
     * @param key the key
     * @return the number of keys in the symbol table strictly less than <tt>key</tt>
     * @throws NullPointerException if <tt>key</tt> is <tt>null</tt>
     */
    public int rank(Key key) {
        if (key == null) throw new NullPointerException("argument to rank() is null");
        return rank(key, root);
    }

    // Number of keys in the subtree less than key.
    private int rank(Key key, Node x) {
        if (x == null) return 0;
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) return rank(key, x.left);
        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
        else              return size(x.left);
    }

    /**
     * Returns all keys in the symbol table as an <tt>Iterable</tt>.
     * To iterate over all of the keys in the symbol table named <tt>st</tt>,
     * use the foreach notation: <tt>for (Key key : st.keys())</tt>.
     *
     * @return all keys in the symbol table
     */
    public Iterable<Key> keys() {
        return keys(min(), max());
    }

    /**
     * Returns all keys in the symbol table in the given range,
     * as an <tt>Iterable</tt>.
     *
     * @return all keys in the sybol table between <tt>lo</tt>
     *         (inclusive) and <tt>hi</tt> (exclusive)
     * @throws NullPointerException if either <tt>lo</tt> or <tt>hi</tt>
     *         is <tt>null</tt>
     */
    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new NullPointerException("first argument to keys() is null");
        if (hi == null) throw new NullPointerException("second argument to keys() is null");

        Queue<Key> queue = new Queue<Key>();
        keys(root, queue, lo, hi);
        return queue;
    }

    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
        if (x == null) return;
        int cmplo = lo.compareTo(x.key);
        int cmphi = hi.compareTo(x.key);
        if (cmplo < 0) keys(x.left, queue, lo, hi);
        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
        if (cmphi > 0) keys(x.right, queue, lo, hi);
    }

    /**
     * Returns the number of keys in the symbol table in the given range.
     *
     * @return the number of keys in the sybol table between <tt>lo</tt>
     *         (inclusive) and <tt>hi</tt> (exclusive)
     * @throws NullPointerException if either <tt>lo</tt> or <tt>hi</tt>
     *         is <tt>null</tt>
     */
    public int size(Key lo, Key hi) {
        if (lo == null) throw new NullPointerException("first argument to size() is null");
        if (hi == null) throw new NullPointerException("second argument to size() is null");

        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else              return rank(hi) - rank(lo);
    }

    /**
     * Returns the height of the BST (for debugging).
     *
     * @return the height of the BST (a 1-node tree has height 0)
     */
    public int height() {
        return height(root);
    }
    private int height(Node x) {
        if (x == null) return -1;
        return 1 + Math.max(height(x.left), height(x.right));
    }

    /**
     * Returns the keys in the BST in level order (for debugging).
     *
     * @return the keys in the BST in level order traversal
     */
    public Iterable<Key> levelOrder() {
        Queue<Key> keys = new Queue<Key>();
        Queue<Node> queue = new Queue<Node>();
        queue.enqueue(root);
        while (!queue.isEmpty()) {
            Node x = queue.dequeue();
            if (x == null) continue;
            keys.enqueue(x.key);
            queue.enqueue(x.left);
            queue.enqueue(x.right);
        }
        return keys;
    }

/*************************************************************************
    * Check integrity of BST data structure.
    ***************************************************************************/
    private boolean check() {
        if (!isBST())            StdOut.println("Not in symmetric order");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        return isBST() && isSizeConsistent() && isRankConsistent();
    }

    // does this binary tree satisfy symmetric order?
    // Note: this test also ensures that data structure is a binary tree since order is strict
    private boolean isBST() {
        return isBST(root, null, null);
    }

    // is the tree rooted at x a BST with all keys strictly between min and max
    // (if min or max is null, treat as empty constraint)
    // Credit: Bob Dondero's elegant solution
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null && x.key.compareTo(min) <= 0) return false;
        if (max != null && x.key.compareTo(max) >= 0) return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    }

    // are the size fields correct?
    private boolean isSizeConsistent() { return isSizeConsistent(root); }
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.N != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    }

    // check that ranks are consistent
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }
  
    //to print postorder
    public void printPost() {
       if(root == null)
           return;
       printPostUtil(root);
    }
    //utility function to print postorder
    public void printPostUtil(Node root) {
        if(root == null) // base case
           return;
        printPostUtil(root.left); // printing left subtree
        printPostUtil(root.right);// printing right sub tree
        //printing root key value
        StdOut.println("("+root.key+" "+root.val+")");
      
    }


    /**
     * Unit tests the <tt>BST</tt> data type.
     */
    public static void main(String[] args) {
        BST<String, Integer> st = new BST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }

        for (String s : st.levelOrder())
            StdOut.println(s + " " + st.get(s));

        StdOut.println();

        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
    }
}