Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

write C++ code Input: Number n of vertices (i.e. vertex set is {1,2, …,n}), and

ID: 3669595 • Letter: W

Question

write C++ code

Input: Number n of vertices (i.e. vertex set is {1,2, …,n}), and a list of edges (i,j) for 1 i,j n for a directed graph G. After this part, read a list of pair of vertices, one pair at a time.

Output: For each given pair of vertices i, j, output “reachable” if vertex j is reachable from vertex i via a directed path in G; “not reachable”, otherwise. Note that a directed path length can be larger than one.

Goal: Create the directed graph G from the given input, and decide for every given pair of vertices if the second vertex is reachable from the first vertex via a directed path in G. Assume that every vertex is reachable from itself in zero steps.

Hint: You can maintain an array of vertices in which you mark reachable vertices.

Example input file:

5

1 2

2 5

3 4

1 3

Example dialog (still during the same execution of the program):

Graph G is constructed

1 2 <ENTER>

reachable

1 5 <ENTER>

reachable

1 4 <ENTER>

not reachable

2 4 <ENTER>

not reachable

5 5 0 <ENTER>

reachable

In this assignment, you write a C++ program for Problem A. Both correctness and efficiency of your programs are important. You are required to use ADJACENCY MATRIX to represent arcs of graph G. See a large input file for creating G on Page 5 (the last page). Test it with your list of pairs of vertices for reachable/not reachable queries.   

Explanation / Answer

#include<iostream>

#include <list>

using namespace std;

// This class represents a directed graph using adjacency list

// representation

class Graph

{

    int V;    // No. of vertices

    list<int> *adj;    // Pointer to an array containing adjacency lists

public:

    Graph(int V); // Constructor

    void addEdge(int v, int w); // function to add an edge to graph

    bool isReachable(int s, int d);

};

Graph::Graph(int V)

{

    this->V = V;

    adj = new list<int>[V];

}

void Graph::addEdge(int v, int w)

{

    adj[v].push_back(w); // Add w to v’s list.

}

// A BFS based function to check whether d is reachable from s.

bool Graph::isReachable(int s, int d)

{

    // Base case

    if (s == d)

      return true;

    // Mark all the vertices as not visited

    bool *visited = new bool[V];

    for (int i = 0; i < V; i++)

        visited[i] = false;

    // Create a queue for BFS

    list<int> queue;

    // Mark the current node as visited and enqueue it

    visited[s] = true;

    queue.push_back(s);

    // it will be used to get all adjacent vertices of a vertex

    list<int>::iterator i;

    while (!queue.empty())

    {

        // Dequeue a vertex from queue and print it

        s = queue.front();

        queue.pop_front();

        // Get all adjacent vertices of the dequeued vertex s

        // If a adjacent has not been visited, then mark it visited

        // and enqueue it

        for (i = adj[s].begin(); i != adj[s].end(); ++i)

        {

            // If this adjacent node is the destination node, then

            // return true

            if (*i == d)

                return true;

            // Else, continue to do BFS

            if (!visited[*i])

            {

                visited[*i] = true;

                queue.push_back(*i);

            }

        }

    }

     

    // If BFS is complete without visiting d

    return false;

}

// Driver program to test methods of graph class

int main()

{

    // Create a graph given in the above diagram

    Graph g(4);

    g.addEdge(0, 1);

    g.addEdge(0, 2);

    g.addEdge(1, 2);

    g.addEdge(2, 0);

    g.addEdge(2, 3);

    g.addEdge(3, 3);

    int u = 1, v = 3;

    if(g.isReachable(u, v))

        cout<< " There is a path from " << u << " to " << v;

    else

        cout<< " There is no path from " << u << " to " << v;

    u = 3, v = 1;

    if(g.isReachable(u, v))

        cout<< " There is a path from " << u << " to " << v;

    else

        cout<< " There is no path from " << u << " to " << v;

    return 0;

}

#include<iostream>

#include <list>

using namespace std;

// This class represents a directed graph using adjacency list

// representation

class Graph

{

    int V;    // No. of vertices

    list<int> *adj;    // Pointer to an array containing adjacency lists

public:

    Graph(int V); // Constructor

    void addEdge(int v, int w); // function to add an edge to graph

    bool isReachable(int s, int d);

};

Graph::Graph(int V)

{

    this->V = V;

    adj = new list<int>[V];

}

void Graph::addEdge(int v, int w)

{

    adj[v].push_back(w); // Add w to v’s list.

}

// A BFS based function to check whether d is reachable from s.

bool Graph::isReachable(int s, int d)

{

    // Base case

    if (s == d)

      return true;

    // Mark all the vertices as not visited

    bool *visited = new bool[V];

    for (int i = 0; i < V; i++)

        visited[i] = false;

    // Create a queue for BFS

    list<int> queue;

    // Mark the current node as visited and enqueue it

    visited[s] = true;

    queue.push_back(s);

    // it will be used to get all adjacent vertices of a vertex

    list<int>::iterator i;

    while (!queue.empty())

    {

        // Dequeue a vertex from queue and print it

        s = queue.front();

        queue.pop_front();

        // Get all adjacent vertices of the dequeued vertex s

        // If a adjacent has not been visited, then mark it visited

        // and enqueue it

        for (i = adj[s].begin(); i != adj[s].end(); ++i)

        {

            // If this adjacent node is the destination node, then

            // return true

            if (*i == d)

                return true;

            // Else, continue to do BFS

            if (!visited[*i])

            {

                visited[*i] = true;

                queue.push_back(*i);

            }

        }

    }

     

    // If BFS is complete without visiting d

    return false;

}

// Driver program to test methods of graph class

int main()

{

    // Create a graph given in the above diagram

    Graph g(4);

    g.addEdge(0, 1);

    g.addEdge(0, 2);

    g.addEdge(1, 2);

    g.addEdge(2, 0);

    g.addEdge(2, 3);

    g.addEdge(3, 3);

    int u = 1, v = 3;

    if(g.isReachable(u, v))

        cout<< " There is a path from " << u << " to " << v;

    else

        cout<< " There is no path from " << u << " to " << v;

    u = 3, v = 1;

    if(g.isReachable(u, v))

        cout<< " There is a path from " << u << " to " << v;

    else

        cout<< " There is no path from " << u << " to " << v;

    return 0;

}