I have a BInary Search Tree code and I need to write the test client (not Junit
ID: 3662485 • Letter: I
Question
I have a BInary Search Tree code and I need to write the test client (not Junit and not from ALGORITHMS) for the search tree. I need to test min, max, floor, ceiling, select, rank, delete, deletemin, deletemax, and keys. I'm not sure how to do this so if I could get some explanation with the parts that ould be great.
Here's my code for the search tree:
package week1;
import java.util.NoSuchElementException;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdOut;
public class BST<Key extends Comparable<Key>, Value> {
private Node root; // root of BST
private class Node {
private Key key; // sorted by key
private Value val; // associated data
private Node left, right; // left and right subtrees
private int N; // number of nodes in subtree
public Node(Key key, Value val, int N) {
this.key = key;
this.val = val;
this.N = N;
}
}
public BST() {
root = null;
}
public boolean isEmpty() {
return size() == 0;
}
public int size() {
return size(root);
}
// return number of key-value pairs in BST rooted at x
private int size(Node x) {
if (x == null) return 0;
else return x.N;
}
public boolean contains(Key key) {
if (key == null) throw new NullPointerException("Null");
return get(key) != null;
}
public Value get(Key key) {
return get(root, key);
}
private Value get(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) return get(x.left, key);
else if (cmp > 0) return get(x.right, key);
else return x.val;
}
public void put(Key key, Value val) {
if (key == null) throw new NullPointerException("Null");
if (val == null) {
delete(key);
return;
}
root = put(root, key, val);
assert check();
}
private Node put(Node x, Key key, Value val) {
if (x == null) return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;
x.N = 1 + size(x.left) + size(x.right);
return x;
}
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException(" ");
root = deleteMin(root);
assert check();
}
private Node deleteMin(Node x) {
if (x.left == null) return x.right;
x.left = deleteMin(x.left);
x.N = size(x.left) + size(x.right) + 1;
return x;
}
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException(" ");
root = deleteMax(root);
assert check();
}
private Node deleteMax(Node x) {
if (x.right == null) return x.left;
x.right = deleteMax(x.right);
x.N = size(x.left) + size(x.right) + 1;
return x;
}
public void delete(Key key) {
if (key == null) throw new NullPointerException("argument to delete() is null");
root = delete(root, key);
assert check();
}
private Node delete(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = delete(x.left, key);
else if (cmp > 0) x.right = delete(x.right, key);
else {
if (x.right == null) return x.left;
if (x.left == null) return x.right;
Node t = x;
x = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
}
x.N = size(x.left) + size(x.right) + 1;
return x;
}
public Key min() {
//if (isEmpty()) throw new NoSuchElementException("Null");
return min(root).key;
}
private Node min(Node x) {
if (x.left == null) return x;
else return min(x.left);
}
public Key max() {
if (isEmpty()) throw new NoSuchElementException("Null");
return max(root).key;
}
private Node max(Node x) {
if (x.right == null) return x;
else return max(x.right);
}
public Key floor(Key key) {
if (key == null) throw new NullPointerException("Null");
if (isEmpty()) throw new NoSuchElementException("Null");
Node x = floor(root, key);
if (x == null) return null;
else return x.key;
}
private Node floor(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);
if (t != null) return t;
else return x;
}
public Key ceiling(Key key) {
if (key == null) throw new NullPointerException("Null");
if (isEmpty()) throw new NoSuchElementException("Null");
Node x = ceiling(root, key);
if (x == null) return null;
else return x.key;
}
private Node ceiling(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) {
Node t = ceiling(x.left, key);
if (t != null) return t;
else return x;
}
return ceiling(x.right, key);
}
public Key select(int k) {
if (k < 0 || k >= size()) throw new IllegalArgumentException();
Node x = select(root, k);
return x.key;
}
// Return key of rank k.
private Node select(Node x, int k) {
if (x == null) return null;
int t = size(x.left);
if (t > k) return select(x.left, k);
else if (t < k) return select(x.right, k-t-1);
else return x;
}
public int rank(Key key) {
if (key == null) throw new NullPointerException("Null");
return rank(key, root);
}
// Number of keys in the subtree less than key.
private int rank(Key key, Node x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}
public Iterable<Key> keys() {
return keys(min(), max());
//edit?
}
public Iterable<Key> keys(Key lo, Key hi) {
if (lo == null) throw new NullPointerException("Null");
if (hi == null) throw new NullPointerException("Null");
Queue<Key> queue = new Queue<Key>();
keys(root, queue, lo, hi);
return queue;
}
private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}
public int size(Key lo, Key hi) {
if (lo == null) throw new NullPointerException("Null");
if (hi == null) throw new NullPointerException("Null");
if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
public int height() {
return height(root);
}
private int height(Node root) {
int leftSide = 0;
int rightSide = 0;
if (root != null){
if (root.left != null){
leftSide = height(root.left);
}
if (root.right != null){
rightSide = height(root.right);
}
}
return leftSide > rightSide ? leftSide + 1 : rightSide + 1;
}
public Iterable<Key> levelOrder() {
Queue<Key> keys = new Queue<Key>();
Queue<Node> queue = new Queue<Node>();
queue.enqueue(root);
while (!queue.isEmpty()) {
Node x = queue.dequeue();
if (x == null) continue;
keys.enqueue(x.key);
queue.enqueue(x.left);
queue.enqueue(x.right);
}
return keys;
}
private boolean check() {
if (!isBST()) StdOut.println("Not in symmetric order");
if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
if (!isRankConsistent()) StdOut.println("Ranks not consistent");
return isBST() && isSizeConsistent() && isRankConsistent();
}
// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since order is strict
private boolean isBST() {
return isBST(root, null, null);
}
// is the tree rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: Bob Dondero's elegant solution
private boolean isBST(Node x, Key min, Key max) {
if (x == null) return true;
if (min != null && x.key.compareTo(min) <= 0) return false;
if (max != null && x.key.compareTo(max) >= 0) return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}
// are the size fields correct?
private boolean isSizeConsistent() { return isSizeConsistent(root); }
private boolean isSizeConsistent(Node x) {
if (x == null) return true;
if (x.N != size(x.left) + size(x.right) + 1) return false;
return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}
// check that ranks are consistent
private boolean isRankConsistent() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (Key key : keys())
if (key.compareTo(select(rank(key))) != 0) return false;
return true;
}
public static void main(String[] args) {
BST<String, Integer> tree = new BST<String, Integer>();
tree.put("one", 1);
tree.put("two", 2);
tree.put("three", 3);
tree.put("four", 4);
/* for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}*/
//for (String s : tree.keys())
//StdOut.println(s + " " + tree.get(s));
System.out.println("Height = " + tree.height());
}
}
Here is how I began the test client per instructions:
import edu.princeton.cs.algs4.StdOut;
public class TestBST {
public static void main(String[] args) {
//add Hashmap?
ST<String, Integer> st;
st = new ST<String, Integer>();
for(String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}
Explanation / Answer
Delete:
In this case based on root ,it will delete ,From your code deleteMin returns Node to root
then after apply the assert condition on that.
Min:
return min(root).key
here node type return , in that it will check x.left == null then proceed further step
that means ,in the BST -- the format is
left , root, right nodes.
so check left node of given element is null then return that element.
Max:
return max(root).key
here node type return , in that it will check x.right == null then proceed further step
that means ,in the BST -- the format is
left , root, right nodes.
so check right node of given element is null then return that element.
floor:
In that function based on Node and key and do operation as like comparisions and x.left
and x.right key
ceiling:
same as ceiling and it has operations and returns ceiling() functions.
select:
In this x.left and find out size and and if comparison like t>k and t<k comparision select(x.left,k)
rank:
here key,x.left and key,x.right here also returns size of the x.left node
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.