Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

I have a BInary Search Tree code and I need to write the test client (not Junit

ID: 3662485 • Letter: I

Question

I have a BInary Search Tree code and I need to write the test client (not Junit and not from ALGORITHMS) for the search tree. I need to test min, max, floor, ceiling, select, rank, delete, deletemin, deletemax, and keys. I'm not sure how to do this so if I could get some explanation with the parts that ould be great.

Here's my code for the search tree:

package week1;

import java.util.NoSuchElementException;

import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdOut;

public class BST<Key extends Comparable<Key>, Value> {
   private Node root;             // root of BST

    private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated data
        private Node left, right; // left and right subtrees
        private int N;             // number of nodes in subtree

        public Node(Key key, Value val, int N) {
            this.key = key;
            this.val = val;
            this.N = N;
        }
    }


    public BST() {
       root = null;
    }


    public boolean isEmpty() {
        return size() == 0;
    }

    public int size() {
        return size(root);
    }

    // return number of key-value pairs in BST rooted at x
    private int size(Node x) {
        if (x == null) return 0;
        else return x.N;
    }

    public boolean contains(Key key) {
        if (key == null) throw new NullPointerException("Null");
        return get(key) != null;
    }


    public Value get(Key key) {
        return get(root, key);
    }

    private Value get(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) return get(x.left, key);
        else if (cmp > 0) return get(x.right, key);
        else              return x.val;
    }


    public void put(Key key, Value val) {
        if (key == null) throw new NullPointerException("Null");
        if (val == null) {
            delete(key);
            return;
        }
        root = put(root, key, val);
        assert check();
    }

    private Node put(Node x, Key key, Value val) {
        if (x == null) return new Node(key, val, 1);
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) x.left = put(x.left, key, val);
        else if (cmp > 0) x.right = put(x.right, key, val);
        else              x.val   = val;
        x.N = 1 + size(x.left) + size(x.right);
        return x;
    }


    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException(" ");
        root = deleteMin(root);
        assert check();
    }

    private Node deleteMin(Node x) {
        if (x.left == null) return x.right;
        x.left = deleteMin(x.left);
        x.N = size(x.left) + size(x.right) + 1;
        return x;
    }

    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException(" ");
        root = deleteMax(root);
        assert check();
    }

    private Node deleteMax(Node x) {
        if (x.right == null) return x.left;
        x.right = deleteMax(x.right);
        x.N = size(x.left) + size(x.right) + 1;
        return x;
    }


    public void delete(Key key) {
        if (key == null) throw new NullPointerException("argument to delete() is null");
        root = delete(root, key);
        assert check();
    }

    private Node delete(Node x, Key key) {
        if (x == null) return null;

        int cmp = key.compareTo(x.key);
        if      (cmp < 0) x.left = delete(x.left, key);
        else if (cmp > 0) x.right = delete(x.right, key);
        else {
            if (x.right == null) return x.left;
            if (x.left == null) return x.right;
            Node t = x;
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        }
        x.N = size(x.left) + size(x.right) + 1;
        return x;
    }


    public Key min() {
        //if (isEmpty()) throw new NoSuchElementException("Null");
        return min(root).key;
    }

    private Node min(Node x) {
        if (x.left == null) return x;
        else                return min(x.left);
    }


    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("Null");
        return max(root).key;
    }

    private Node max(Node x) {
        if (x.right == null) return x;
        else                 return max(x.right);
    }

    public Key floor(Key key) {
        if (key == null) throw new NullPointerException("Null");
        if (isEmpty()) throw new NoSuchElementException("Null");
        Node x = floor(root, key);
        if (x == null) return null;
        else return x.key;
    }

    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0) return floor(x.left, key);
        Node t = floor(x.right, key);
        if (t != null) return t;
        else return x;
    }

  
    public Key ceiling(Key key) {
        if (key == null) throw new NullPointerException("Null");
        if (isEmpty()) throw new NoSuchElementException("Null");
        Node x = ceiling(root, key);
        if (x == null) return null;
        else return x.key;
    }

    private Node ceiling(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0) {
            Node t = ceiling(x.left, key);
            if (t != null) return t;
            else return x;
        }
        return ceiling(x.right, key);
    }

    public Key select(int k) {
        if (k < 0 || k >= size()) throw new IllegalArgumentException();
        Node x = select(root, k);
        return x.key;
    }

    // Return key of rank k.
    private Node select(Node x, int k) {
        if (x == null) return null;
        int t = size(x.left);
        if      (t > k) return select(x.left, k);
        else if (t < k) return select(x.right, k-t-1);
        else            return x;
    }


    public int rank(Key key) {
        if (key == null) throw new NullPointerException("Null");
        return rank(key, root);
    }

    // Number of keys in the subtree less than key.
    private int rank(Key key, Node x) {
        if (x == null) return 0;
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) return rank(key, x.left);
        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
        else              return size(x.left);
    }


    public Iterable<Key> keys() {
       return keys(min(), max());
//edit?
    }


    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new NullPointerException("Null");
        if (hi == null) throw new NullPointerException("Null");

        Queue<Key> queue = new Queue<Key>();
        keys(root, queue, lo, hi);
        return queue;
    }

    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
        if (x == null) return;
        int cmplo = lo.compareTo(x.key);
        int cmphi = hi.compareTo(x.key);
        if (cmplo < 0) keys(x.left, queue, lo, hi);
        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
        if (cmphi > 0) keys(x.right, queue, lo, hi);
    }


    public int size(Key lo, Key hi) {
        if (lo == null) throw new NullPointerException("Null");
        if (hi == null) throw new NullPointerException("Null");

        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else              return rank(hi) - rank(lo);
    }


    public int height() {
        return height(root);
    }
    private int height(Node root) {
       int leftSide = 0;
       int rightSide = 0;
      
       if (root != null){
           if (root.left != null){
               leftSide = height(root.left);
           }
           if (root.right != null){
               rightSide = height(root.right);
           }
       }
       return leftSide > rightSide ? leftSide + 1 : rightSide + 1;
    }

    public Iterable<Key> levelOrder() {
        Queue<Key> keys = new Queue<Key>();
        Queue<Node> queue = new Queue<Node>();
        queue.enqueue(root);
        while (!queue.isEmpty()) {
            Node x = queue.dequeue();
            if (x == null) continue;
            keys.enqueue(x.key);
            queue.enqueue(x.left);
            queue.enqueue(x.right);
        }
        return keys;
    }


    private boolean check() {
        if (!isBST())            StdOut.println("Not in symmetric order");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        return isBST() && isSizeConsistent() && isRankConsistent();
    }

    // does this binary tree satisfy symmetric order?
    // Note: this test also ensures that data structure is a binary tree since order is strict
    private boolean isBST() {
        return isBST(root, null, null);
    }

    // is the tree rooted at x a BST with all keys strictly between min and max
    // (if min or max is null, treat as empty constraint)
    // Credit: Bob Dondero's elegant solution
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null && x.key.compareTo(min) <= 0) return false;
        if (max != null && x.key.compareTo(max) >= 0) return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    }

    // are the size fields correct?
    private boolean isSizeConsistent() { return isSizeConsistent(root); }
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.N != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    }

    // check that ranks are consistent
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }


  
    public static void main(String[] args) {
BST<String, Integer> tree = new BST<String, Integer>();
      
        tree.put("one", 1);
        tree.put("two", 2);
        tree.put("three", 3);
        tree.put("four", 4);
      
       /* for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }*/
        //for (String s : tree.keys())
            //StdOut.println(s + " " + tree.get(s));
      
          System.out.println("Height = " + tree.height());

      
      
      
    }

}


Here is how I began the test client per instructions:

import edu.princeton.cs.algs4.StdOut;

public class TestBST {
   public static void main(String[] args) {
       //add Hashmap?
       ST<String, Integer> st;
       st = new ST<String, Integer>();
      
       for(String s : st.keys())
           StdOut.println(s + " " + st.get(s));
      
   }
}

Explanation / Answer

Delete:

In this case based on root ,it will delete ,From your code deleteMin returns Node to root

then after apply the assert condition on that.

Min:

   return min(root).key

here node type return , in that it will check x.left == null then proceed further step
that means ,in the BST -- the format is

   left , root, right nodes.


so check left node of given element is null then return that element.

Max:

   return max(root).key

here node type return , in that it will check x.right == null then proceed further step
that means ,in the BST -- the format is

   left , root, right nodes.


so check right node of given element is null then return that element.

floor:

   In that function based on Node and key and do operation as like comparisions and x.left
and x.right key


ceiling:

   same as ceiling and it has operations and returns ceiling() functions.

select:

In this x.left and find out size and and if comparison like t>k and t<k comparision select(x.left,k)


rank:

   here key,x.left and key,x.right here also returns size of the x.left node