Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

solve using VAM method, this is a linear programming problem. MG Auto, of Exampl

ID: 365333 • Letter: S

Question

solve using VAM method, this is a linear programming problem.

MG Auto, of Example 5.1-1, produces four car models: M1, M2, M3, and M4. The Detroit plant produces models M1, M2, and M4. Models M1 and M2 are also produced in New Orleans. The Los Angeles plant manufactures models M3 and M4. The capacities of the various plants and the demands at the distribution centers are given in Table 5.29 5-13. The mileage chart is the same as given in Example 5.1-1, and the transportation rate remains at 8 cents per car mile for all models. Additionally, it is possible to satisfy a percentage of the demand for some models from the supply of others according to the specifications in Table 5.30 (a) Formulate the corresponding transportation model (b) Determine the optimum shipping schedule. (Hint: Add four new destinations corre- demands at the new destinations are determined from the given percentages.) TABLE 5.27 Transportation Cost/Crate for Problem 5-11 sponding to the new combinations [M1, M2], [M3, M4], [M1, M3], and [M2, M4].The Retailer 4 Orchard 1 $1 Orchard 2 $2 Orchard 3 $1 S2 $4 $3 $1 $5 $2 $2 S3 TABLE 5.28 Mileage Chart and Supply and Demand for Problem 5-12 Dealer 2 5 Supply 200 100 150 140 150 160 35 400 80 200 130 150 140 150 70 Center 1 100 Center 2 Center 3 50 40 Demand 100 200

Explanation / Answer

--

Vogel’s Approximation method:

Steps:

100

150

200

140

35

50

70

60

65

80

40

90

100

150

130

Row penalty

100

150

200

140

35

100-35=65

50

70

60

65

80

10

40

90

100

150

130

50

Column Penalty

50-40=10

20

40

75

45

Step 2:

Supply

Row penalty

100

150

200

140

35

400

100-35=65

50

70

60

65 (160)

80

200-160=40

10

40

90

100

150

130

150

50

Demand

100

200

150

160-160=0

140

Column Penalty

50-40=10

20

40

75

45

Remove column 4:

Supply

Row penalty

100

150

200

35

400

65

50

70

60

80

40

10

40

90

100

130

150

50

Demand

100

200

150

140

Column Penalty

50-40=10

20

40

45

The maximum penalty is 65

The row has 35 as the minimum value with the demand 140 < supply 400

so allocate 45 and subtract it from both the demand and supply and update the table as follows:

Supply

Row penalty

100

150

200

35 (140)

400-140=260

65

50

70

60

80

40

10

40

90

100

130

150

50

Demand

100

200

150

140-140=0

Column Penalty

50-40=10

20

40

45

Remove column 4

Supply

Row penalty

100 (100)

150

200

260-100=160

50 (Max)

50

70

60

40

10

40

90

100

150

50

Demand

100-100=0

200

150

Column Penalty

10

20

40

Remove column 1:

Supply

Row penalty

150 (160)

200

160-160=0

50 (Max)

70

60

40

10

90

100

150

10

Demand

200-160=40

150

Column Penalty

20

40

Remove row 1:

Supply

Row penalty

70

60(40)

40 -40 =0

10

90

100

150

10

Demand

40

150-40=110

Column Penalty

20

40(Max)

Remove row 1:

Supply

90

100

150

Demand

40

110

As there is only one row left, we just allocate the supply and demand by matching

Demands of 40+110 = supply of 150

Supply

90 (40)

100 (110)

150-40-110=0

Demand

40-40=0

110-110=0

Now multiply each allocation to get the total cost:

Total cost = 100*110 + 90*40 + 60*40 + 150*160 + 100*100 + 35*140 + 65*160

Total Cost = $66,300

--

100

150

200

140

35

50

70

60

65

80

40

90

100

150

130