Design a class Line that implements a line, which is represented by the formula
ID: 3631714 • Letter: D
Question
Design a class Line that implements a line, which is represented by the formula y = ax + b. Your class should store a and b as double member variables. Write a member function intersect() that returns the x coordinate at which this line intersects line . If the two lines are parallel, then your function should throw an exception of type Parallel. Write a C++ program that creates a number of Line objects and tests each pair for intersection. Your program should print an appropriate error message for parallel lines. Create the following files:Explanation / Answer
#ifndef LINE_H
#define LINE_H
#include "Point.h"
using namespace std;
class Line
{
public:
//constructors
Line(); //default constructor
//non-default constructor
//copy constructor
//getters and setters
//getStart
//getEnd
//setStart
//setEnd
//other useful methods
//getSlope
//getMidpoint
//print
//distance
private:
//private, helper methods
//getABC
Point start;
Point end;
};
#endif /* LINE_H */
#include <iostream>
#include "Line.h"
using namespace std;
//constructors
Line::Line() //default constructor
{
}
//non-default constructor
//copy constructor
//getters and setters
//getStart
//getEnd
//setStart
//setEnd
//other useful methods
//getSlope
//getMidpoint
//print
//distance
//private, helper methods
//getABC
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "geom.h"
#include <math.h>
#include <libnr/nr-point-fns.h>
/* Intersect two lines */
/**
* Finds the intersection of the two (infinite) lines
* defined by the points p such that dot(n0, p) == d0 and dot(n1, p) == d1.
*
* If the two lines intersect, then result becomes their point of
* intersection; otherwise, result remains unchanged.
*/
sp_intersector_kind sp_intersector_line_intersection(NR::Point const &n0, double const d0,
NR::Point const &n1, double const d1,
NR::Point &result) {
/* This function finds the intersection of the two lines (infinite)
* defined by n0.X = d0 and x1.X = d1. The algorithm is as follows:
* To compute the intersection point use kramer's rule:
*
* convert lines to form
* ax + by = c
* dx + ey = f
*
* (
* e.g. a = (x2 - x1), b = (y2 - y1), c = (x2 - x1)*x1 + (y2 - y1)*y1
* )
*
* In our case we use:
* a = n0.x d = n1.x
* b = n0.y e = n1.y
* c = d0 f = d1
*
* so:
*
* adx + bdy = cd
* adx + aey = af
*
* bdy - aey = cd - af
* (bd - ae)y = cd - af
*
* y = (cd - af)/(bd - ae)
*
* repeat for x and you get:
*
* x = (fb - ce)/(bd - ae)
*
* if the denominator (bd-ae) is 0 then the lines are parallel, if the
* numerators are then 0 then the lines coincide. */
double denominator = dot(rot90(n0), n1);
double X = (n1[NR::Y] * d0 -
n0[NR::Y] * d1);
/* X = (-d1, d0) dot (n0[Y], n1[Y]) */
if(denominator == 0) {
if ( X == 0 ) {
return coincident;
} else {
return parallel;
}
}
double Y = (n0[NR::X] * d1 -
n1[NR::X] * d0);
result = NR::Point(X, Y)/denominator;
return intersects;
}
/*
New code which we are not yet using
*/
#ifdef HAVE_NEW_INTERSECTOR_CODE
/* ccw exists as a building block */
static int
sp_intersector_ccw(const NR::Point p0, const NR::Point p1, const NR::Point p2)
/* Determine which way a set of three points winds. */
{
NR::Point d1 = p1 - p0;
NR::Point d2 = p2 - p0;
/* compare slopes but avoid division operation */
double c = dot(rot90(d1), d2);
if(c > 0)
return +1; // ccw - do these match def'n in header?
if(c < 0)
return -1; // cw
/* Colinear [or NaN]. Decide the order. */
if ( ( d1[0] * d2[0] < 0 ) ||
( d1[1] * d2[1] < 0 ) ) {
return -1; // p2 < p0 < p1
} else if ( dot(d1,d1) < dot(d2,d2) ) {
return +1; // p0 <= p1 < p2
} else {
return 0; // p0 <= p2 <= p1
}
}
/** Determine whether two line segments intersect. This doesn't find
the point of intersection, use the line_intersect function above,
or the segment_intersection interface below.
pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11.
*/
static bool
sp_intersector_segment_intersectp(NR::Point const &p00, NR::Point const &p01,
NR::Point const &p10, NR::Point const &p11)
{
g_return_val_if_fail(p00 != p01, false);
g_return_val_if_fail(p10 != p11, false);
/* true iff ( (the p1 segment straddles the p0 infinite line)
* and (the p0 segment straddles the p1 infinite line) ). */
return ((sp_intersector_ccw(p00,p01, p10)
*sp_intersector_ccw(p00, p01, p11)) <=0 )
&&
((sp_intersector_ccw(p10,p11, p00)
*sp_intersector_ccw(p10, p11, p01)) <=0 );
}
/** Determine whether & where two line segments intersect.
If the two segments don't intersect, then result remains unchanged.
pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11.
**/
static sp_intersector_kind
sp_intersector_segment_intersect(NR::Point const &p00, NR::Point const &p01,
NR::Point const &p10, NR::Point const &p11,
NR::Point &result)
{
if(sp_intersector_segment_intersectp(p00, p01, p10, p11)) {
NR::Point n0 = (p00 - p01).ccw();
double d0 = dot(n0,p00);
NR::Point n1 = (p10 - p11).ccw();
double d1 = dot(n1,p10);
return sp_intersector_line_intersection(n0, d0, n1, d1, result);
} else {
return no_intersection;
}
}
#endif /* end yet-unused HAVE_NEW_INTERSECTOR_CODE code */
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.