Modify the given RationalNumber class (see below) so that it implements the Comp
ID: 3621083 • Letter: M
Question
Modify the given RationalNumber class (see below) so that it implements the Comparable interface (which means it should implement the compareTo method). To perform the comparison, compute an equivalent floating point value from the numerator and denominator for both RationalNumber objects, then compare them using a tolerance value of 0.0001. Write a main driver to test your modifications.
//********************************************************************
// RationalNumber.java Java Foundations
//
// Represents one rational number with a numerator and denominator.
//********************************************************************
public class RationalNumber
{
private int numerator, denominator;
//-----------------------------------------------------------------
// Constructor: Sets up the rational number by ensuring a nonzero
// denominator and making only the numerator signed.
//-----------------------------------------------------------------
public RationalNumber (int numer, int denom)
{
if (denom == 0)
denom = 1;
// Make the numerator "store" the sign
if (denom < 0)
{
numer = numer * -1;
denom = denom * -1;
}
numerator = numer;
denominator = denom;
reduce();
}
//-----------------------------------------------------------------
// Returns the numerator of this rational number.
//-----------------------------------------------------------------
public int getNumerator ()
{
return numerator;
}
//-----------------------------------------------------------------
// Returns the denominator of this rational number.
//-----------------------------------------------------------------
public int getDenominator ()
{
return denominator;
}
//-----------------------------------------------------------------
// Returns the reciprocal of this rational number.
//-----------------------------------------------------------------
public RationalNumber reciprocal ()
{
return new RationalNumber (denominator, numerator);
}
//-----------------------------------------------------------------
// Adds this rational number to the one passed as a parameter.
// A common denominator is found by multiplying the individual
// denominators.
//-----------------------------------------------------------------
public RationalNumber add (RationalNumber op2)
{
int commonDenominator = denominator * op2.getDenominator();
int numerator1 = numerator * op2.getDenominator();
int numerator2 = op2.getNumerator() * denominator;
int sum = numerator1 + numerator2;
return new RationalNumber (sum, commonDenominator);
}
//-----------------------------------------------------------------
// Subtracts the rational number passed as a parameter from this
// rational number.
//-----------------------------------------------------------------
public RationalNumber subtract (RationalNumber op2)
{
int commonDenominator = denominator * op2.getDenominator();
int numerator1 = numerator * op2.getDenominator();
int numerator2 = op2.getNumerator() * denominator;
int difference = numerator1 - numerator2;
return new RationalNumber (difference, commonDenominator);
}
//-----------------------------------------------------------------
// Multiplies this rational number by the one passed as a
// parameter.
//-----------------------------------------------------------------
public RationalNumber multiply (RationalNumber op2)
{
int numer = numerator * op2.getNumerator();
int denom = denominator * op2.getDenominator();
return new RationalNumber (numer, denom);
}
//-----------------------------------------------------------------
// Divides this rational number by the one passed as a parameter
// by multiplying by the reciprocal of the second rational.
//-----------------------------------------------------------------
public RationalNumber divide (RationalNumber op2)
{
return multiply (op2.reciprocal());
}
//-----------------------------------------------------------------
// Determines if this rational number is equal to the one passed
// as a parameter. Assumes they are both reduced.
//-----------------------------------------------------------------
public boolean isLike (RationalNumber op2)
{
return ( numerator == op2.getNumerator() &&
denominator == op2.getDenominator() );
}
//-----------------------------------------------------------------
// Returns this rational number as a string.
//-----------------------------------------------------------------
public String toString ()
{
String result;
if (numerator == 0)
result = "0";
else
if (denominator == 1)
result = numerator + "";
else
result = numerator + "/" + denominator;
return result;
}
//-----------------------------------------------------------------
// Reduces this rational number by dividing both the numerator
// and the denominator by their greatest common divisor.
//-----------------------------------------------------------------
private void reduce ()
{
if (numerator != 0)
{
int common = gcd (Math.abs(numerator), denominator);
numerator = numerator / common;
denominator = denominator / common;
}
}
//-----------------------------------------------------------------
// Computes and returns the greatest common divisor of the two
// positive parameters. Uses Euclid's algorithm.
//-----------------------------------------------------------------
private int gcd (int num1, int num2)
{
while (num1 != num2)
if (num1 > num2)
num1 = num1 - num2;
else
num2 = num2 - num1;
return num1;
}
}
Explanation / Answer
To implement the comparable interface:
public class RationalNumber implements Comparable<RationalNumber>
Now implement compareTo():
public int compareTo(RationalNumber rhs)
{
double r1 = (double)numerator/denominator;
double r2 = (double)rhs.numerator/rhs.denominator;
// to compute using tolerance of 0.0001, multiply by 10000
r1 *= 10000;
r2 *= 10000;
return (int)(r1 - r2);
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.