can someone please do this code in C++ and should be able to compile in a compil
ID: 3604392 • Letter: C
Question
can someone please do this code in C++ and should be able to compile in a compiler like Visual Studio
In the game of chess, a queen is the most "powerful" piece which can move any number of squares vertically t, horizontally (-), or diagonally in the chessboard. The n-Queens problem is to put n queens on an n × n chessboard so that the queens cannot attack each other. That is, no two queens share the same row, column, or diagonal. In this assignment, you will use two-dimensional arrays to write a program to put queens on the board one by one. Figure 1 shows an example 18 × 18 board configuration. In the figure, 'Q' denotes a queen,',' denotes an empty square, and '' denotes a square that is attacked by a queen. The rows and columns are named in numbers (0-17) and uppercase letters (A-R) respectively. Note that a necessary (but not sufficient) condition to solve the n-Queens problem is to have exactly one queen on each row and on each column. A BCDEFGHIJ K L M NO P QR 1 2 4 7 10 12 . 15 No. of Queens - 2 Figure 1: An Example 18 × 18 Board Configuration Program Specification This section describes the chessboard representation, program flow, and some special requirements. Chessboard Representation The chessboard will be represented by a two-dimensional array of chan. The array elements shouldExplanation / Answer
/* C/C++ program to solve N Queen Problem using
backtracking */
#define N 18
#include<stdio.h>
/* A utility function to print solution */
void printSolution(int board[N][N])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
printf(" %d ", board[i][j]);
printf("n");
}
}
/* A utility function to check if a queen can
be placed on board[row][col]. Note that this
function is called when "col" queens are
already placed in columns from 0 to col -1.
So we need to check only left side for
attacking queens */
bool isSafe(int board[N][N], int row, int col)
{
int i, j;
/* Check this row on left side */
for (i = 0; i < col; i++)
if (board[row][i])
return false;
/* Check upper diagonal on left side */
for (i=row, j=col; i>=0 && j>=0; i--, j--)
if (board[i][j])
return false;
/* Check lower diagonal on left side */
for (i=row, j=col; j>=0 && i<N; i++, j--)
if (board[i][j])
return false;
return true;
}
/* A recursive utility function to solve N
Queen problem */
bool solveNQUtil(int board[N][N], int col)
{
/* base case: If all queens are placed
then return true */
if (col >= N)
return true;
/* Consider this column and try placing
this queen in all rows one by one */
for (int i = 0; i < N; i++)
{
/* Check if queen can be placed on
board[i][col] */
if ( isSafe(board, i, col) )
{
/* Place this queen in board[i][col] */
board[i][col] = 1;
/* recur to place rest of the queens */
if ( solveNQUtil(board, col + 1) )
return true;
/* If placing queen in board[i][col]
doesn't lead to a solution, then
remove queen from board[i][col] */
board[i][col] = 0; // BACKTRACK
}
}
/* If queen can not be place in any row in
this colum col then return false */
return false;
}
/* This function solves the N Queen problem using
Backtracking. It mainly uses solveNQUtil() to
solve the problem. It returns false if queens
cannot be placed, otherwise return true and
prints placement of queens in the form of 1s.
Please note that there may be more than one
solutions, this function prints one of the
feasible solutions.*/
bool solveNQ()
{
int board[N][N] =//input here
};
if ( solveNQUtil(board, 0) == false )
{
printf("Solution does not exist");
return false;
}
printSolution(board);
return true;
}
// driver program to test above function
int main()
{
solveNQ();
return 0;
}
/* C/C++ program to solve N Queen Problem using
backtracking */
#define N 18
#include<stdio.h>
/* A utility function to print solution */
void printSolution(int board[N][N])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
printf(" %d ", board[i][j]);
printf("n");
}
}
/* A utility function to check if a queen can
be placed on board[row][col]. Note that this
function is called when "col" queens are
already placed in columns from 0 to col -1.
So we need to check only left side for
attacking queens */
bool isSafe(int board[N][N], int row, int col)
{
int i, j;
/* Check this row on left side */
for (i = 0; i < col; i++)
if (board[row][i])
return false;
/* Check upper diagonal on left side */
for (i=row, j=col; i>=0 && j>=0; i--, j--)
if (board[i][j])
return false;
/* Check lower diagonal on left side */
for (i=row, j=col; j>=0 && i<N; i++, j--)
if (board[i][j])
return false;
return true;
}
/* A recursive utility function to solve N
Queen problem */
bool solveNQUtil(int board[N][N], int col)
{
/* base case: If all queens are placed
then return true */
if (col >= N)
return true;
/* Consider this column and try placing
this queen in all rows one by one */
for (int i = 0; i < N; i++)
{
/* Check if queen can be placed on
board[i][col] */
if ( isSafe(board, i, col) )
{
/* Place this queen in board[i][col] */
board[i][col] = 1;
/* recur to place rest of the queens */
if ( solveNQUtil(board, col + 1) )
return true;
/* If placing queen in board[i][col]
doesn't lead to a solution, then
remove queen from board[i][col] */
board[i][col] = 0; // BACKTRACK
}
}
/* If queen can not be place in any row in
this colum col then return false */
return false;
}
/* This function solves the N Queen problem using
Backtracking. It mainly uses solveNQUtil() to
solve the problem. It returns false if queens
cannot be placed, otherwise return true and
prints placement of queens in the form of 1s.
Please note that there may be more than one
solutions, this function prints one of the
feasible solutions.*/
bool solveNQ()
{
int board[N][N] =//input here
};
if ( solveNQUtil(board, 0) == false )
{
printf("Solution does not exist");
return false;
}
printSolution(board);
return true;
}
// driver program to test above function
int main()
{
solveNQ();
return 0;
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.