Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Your project is to write a test program that will measure the time to transfer 1

ID: 3597433 • Letter: Y

Question

Your project is to write a test program that will measure the time to transfer 1 GB of data under various conditions and prepare a report that charts the results.

Transfer rate, bandwidth speed -- they dont really matter.

Message size: ranging from 1 byte to 65,536 bytes, incrementing in powers of two (1, 2, 4, 8, 16, …)...

You many use Java, C, C++, Go, or Python for this assignment.

Specifications

Your program should allow you to adjust three parameters for testing:

Transport: TCP or UDP Message size: ranging from 1 byte to 65,536 bytes, incrementing in powers of two (1, 2, 4, 8, 16, …) Acknowledgements: pure streaming or stop-and-wait All of these should be specified on the command line so you can easily modify them within a shell script. Your program will support two modes of communication between client and server: pure streaming and a stop-and-wait protocol.

Client

Your client will accept command-line parameters that include: Hostname (or IP address in decimal dot notation) of server Port number of server Transport protocol: TCP or UDP Acknowledgement protocol: streaming or stop-and-wait Message size

The server must be started first, of course, and will receive messages from the client. Prior to starting the data transfer, the client sends a message to the server with a message that, at a minimum, identifies the number of bytes that it will transfer. See the server section for possible extensions. It then waits for an acknowledgement from the server. This acknowledgement can be a single byte. Prior to transferring the data, you will note the start time. After the last message was sent, you will note the end time to compute the overall elapsed time.

Basic server

Your server will be given the following parameters on the command line: Port number for requests Transport protocol: TCP or UDP Acknowledgement protocol: streaming or stop-and-wait The server will start up, create a socket, and read messages from the client. The first message will contain the size. This can be assumed to be a fixed number of bytes (e.g., four bytes). This message is acknowledged (e.g., send back a single byte containing a 1 or whatever). Subsequent bytes read will contain the data.

Output

Server

At the end of each server session (when the maximum number of bytes has been read or a TCP connection has been closed) the server will print: Acknowledgement protocol used Number of messages read Number of bytes read

Client

At the end of execution, the client will print Number of messages sent Number of bytes sent Total transmit time

Explanation / Answer

# include <iostream>

# include <cstdlib>

using namespace std;

/*

* Node Declaration

*/

struct node

{

    int info;

    struct node *left;

    struct node *right;

}*root;

/*

* Class Declaration

*/

class BST

{

    public:

        void find(int, node **, node **);   

        void insert(int);

        void del(int);

        void case_a(node *,node *);

      void case_b(node *,node *);

        void case_c(node *,node *);

        void preorder(node *);

        void inorder(node *);

        void postorder(node *);

        void display(node *, int);

        BST()

        {

            root = NULL;

        }

};

/*

* Main Contains Menu

*/

int main()

{

    int choice, num;

    BST bst;

    node *temp;

    while (1)

    {

        cout<<"-----------------"<<endl;

        cout<<"Operations on BST"<<endl;

        cout<<"-----------------"<<endl;

        cout<<"1.Insert Element "<<endl;

        cout<<"2.Delete Element "<<endl;

        cout<<"3.Inorder Traversal"<<endl;

        cout<<"4.Preorder Traversal"<<endl;

        cout<<"5.Postorder Traversal"<<endl;

        cout<<"6.Display"<<endl;

        cout<<"7.Quit"<<endl;

        cout<<"Enter your choice : ";

        cin>>choice;

        switch(choice)

        {

        case 1:

            temp = new node;

            cout<<"Enter the number to be inserted : ";

                    cin>>temp->info;

            bst.insert(root, temp);

        case 2:

            if (root == NULL)

            {

                cout<<"Tree is empty, nothing to delete"<<endl;

                continue;

            }

            cout<<"Enter the number to be deleted : ";

            cin>>num;

            bst.del(num);

            break;

        case 3:

            cout<<"Inorder Traversal of BST:"<<endl;

            bst.inorder(root);

            cout<<endl;

            break;

                case 4:

            cout<<"Preorder Traversal of BST:"<<endl;

            bst.preorder(root);

            cout<<endl;

            break;

        case 5:

            cout<<"Postorder Traversal of BST:"<<endl;

            bst.postorder(root);

            cout<<endl;

            break;

        case 6:

          cout<<"Display BST:"<<endl;

            bst.display(root,1);

            cout<<endl;

            break;

        case 7:

            exit(1);

        default:

            cout<<"Wrong choice"<<endl;

        }

    }

}

/*

* Find Element in the Tree

*/

void BST::find(int item, node **par, node **loc)

{

    node *ptr, *ptrsave;

    if (root == NULL)

    {

        *loc = NULL;

        *par = NULL;

        return;

    }

    if (item == root->info)

    {

        *loc = root;

        *par = NULL;

        return;

    }

    if (item < root->info)

        ptr = root->left;

    else

        ptr = root->right;

    ptrsave = root;

    while (ptr != NULL)

    {

        if (item == ptr->info)

        {

            *loc = ptr;

            *par = ptrsave;

            return;

        }

        ptrsave = ptr;

        if (item < ptr->info)

            ptr = ptr->left;

                else

                    ptr = ptr->right;

    }

    *loc = NULL;

    *par = ptrsave;

}

/*

* Inserting Element into the Tree

*/

void BST::insert(node *tree, node *newnode)

{

    if (root == NULL)

    {

        root = new node;

        root->info = newnode->info;

        root->left = NULL;

        root->right = NULL;

        cout<<"Root Node is Added"<<endl;

        return;

    }

    if (tree->info == newnode->info)

    {

        cout<<"Element already in the tree"<<endl;

        return;

    }

    if (tree->info > newnode->info)

    {

        if (tree->left != NULL)

        {

            insert(tree->left, newnode);         

                }

                else

                {

          tree->left = newnode;

            (tree->left)->left = NULL;

            (tree->left)->right = NULL;

            cout<<"Node Added To Left"<<endl;

            return;

        }

    }

    else

    {

        if (tree->right != NULL)

        {

            insert(tree->right, newnode);

        }

        else

        {

            tree->right = newnode;

            (tree->right)->left = NULL;

            (tree->right)->right = NULL;

            cout<<"Node Added To Right"<<endl;

            return;

        }     

    }

}

/*

* Delete Element from the tree

*/

void BST::del(int item)

{

    node *parent, *location;

    if (root == NULL)

    {

        cout<<"Tree empty"<<endl;

        return;

    }

    find(item, &parent, &location);

    if (location == NULL)

    {

        cout<<"Item not present in tree"<<endl;

        return;

    }

    if (location->left == NULL && location->right == NULL)

        case_a(parent, location);

    if (location->left != NULL && location->right == NULL)

        case_b(parent, location);

    if (location->left == NULL && location->right != NULL)

        case_b(parent, location);

    if (location->left != NULL && location->right != NULL)

        case_c(parent, location);

    free(location);

}

/*

* Case A

*/

void BST::case_a(node *par, node *loc )

{

    if (par == NULL)

    {

        root = NULL;

    }

    else

    {

        if (loc == par->left)

            par->left = NULL;

        else

            par->right = NULL;

    }

}

/*

* Case B

*/

void BST::case_b(node *par, node *loc)

{

    node *child;

    if (loc->left != NULL)

        child = loc->left;

    else

        child = loc->right;

    if (par == NULL)

    {

        root = child;

    }

    else

    {

        if (loc == par->left)

            par->left = child;

        else

            par->right = child;

    }

}

/*

* Case C

*/

void BST::case_c(node *par, node *loc)

{

    node *ptr, *ptrsave, *suc, *parsuc;

    ptrsave = loc;

    ptr = loc->right;

    while (ptr->left != NULL)

    {

        ptrsave = ptr;

        ptr = ptr->left;

    }

    suc = ptr;

    parsuc = ptrsave;

    if (suc->left == NULL && suc->right == NULL)

        case_a(parsuc, suc);

    else

        case_b(parsuc, suc);

    if (par == NULL)

    {

        root = suc;

  }

    else

    {

        if (loc == par->left)

            par->left = suc;

        else

            par->right = suc;

    }

    suc->left = loc->left;

    suc->right = loc->right;

}

/*

* Pre Order Traversal

*/

void BST::preorder(node *ptr)

{

    if (root == NULL)

    {

        cout<<"Tree is empty"<<endl;

        return;

    }

    if (ptr != NULL)

    {

        cout<<ptr->info<<" ";

        preorder(ptr->left);

        preorder(ptr->right);

    }

}

/*

* In Order Traversal

*/

void BST::inorder(node *ptr)

{

    if (root == NULL)

    {

        cout<<"Tree is empty"<<endl;

        return;

    }

    if (ptr != NULL)

    {

        inorder(ptr->left);

        cout<<ptr->info<<" ";

        inorder(ptr->right);

    }

}

/*

* Postorder Traversal

*/

void BST::postorder(node *ptr)

{

    if (root == NULL)

    {

        cout<<"Tree is empty"<<endl;

        return;

    }

    if (ptr != NULL)

    {

        postorder(ptr->left);

        postorder(ptr->right);

        cout<<ptr->info<<" ";

    }

}

/*

* Display Tree Structure

*/

void BST::display(node *ptr, int level)

{

    int i;

    if (ptr != NULL)

    {

        display(ptr->right, level+1);

        cout<<endl;

        if (ptr == root)

            cout<<"Root->: ";

        else

        {

            for (i = 0;i < level;i++)

                cout<<"       ";

                }

        cout<<ptr->info;

        display(ptr->left, level+1);

    }

}