Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Greatest Common_Divisor (Chapter 7, Pr 6) The greatest common divisor of two int

ID: 3596036 • Letter: G

Question

Greatest Common_Divisor (Chapter 7, Pr 6) The greatest common divisor of two integers is the largest integer that will evenly divide both integers. Refer to Euclid's algorithm. The algorithm involves integer division in a loop, described by the C++ code int ccD (int x, int y) ·abs(x); // absolute value yabs (y) do while y> 0 Implement this function in assembly language. Write a non-recursive procedure CalcGcd to calculate the GCD of two integers received from eax and ebx, and return EAX as GCD calculated for display. This is an example in action 24 10 10 10 24 10 The program will be run like this Enter 32 bit numbeE 10 Enter a 32 bit number: 24 Greatest connoa divisor is: 2 Enter a 32 bit number:-100 Enter a 32 bit numbeE: 48 Greatest conmon divisor is: 4 Even when a negative entered An alternative implementation (not required) is to use subtractions, as see from Using Euclid's algorithm top

Explanation / Answer

section .data

   prompt x 13, 10, 'First number:','$'

   prompt y 13,10, 'Second number:', '$'

   msg db, ‘The GCD of two numbers are’, eax

section .text

global _start

_start:          

mov eax,x

mov ebx,y

_gcd:

                cmp dword [ebx+12], 0

je .BaseCase

.BaseCase:

mov eax, [ebx+8]

recurse:

                mov eax, [ebx+8]

                xor edx, edx     

            div dword [ebx+12]

              push edx       

             mov eax, [ebx+12]

              push eax      

           call _gcd     

           leave    

          ret

.BaseCase:

            mov eax, [ebp+8]