Exercise 30 (Chapter 5) defines the number e and Exercise 31 (Chapter 5) shows h
ID: 3591572 • Letter: E
Question
Exercise 30 (Chapter 5) defines the number e and Exercise 31 (Chapter 5) shows how to approximate the value of e using a different expression.
Interestingly, the value of e can also be approximated using the following expression:
Write a program that uses this formula to approximate the value of e.
The program should prompt the user to input a value for n and then output the approximate value of e.
Test your program for n = 3, 5, 10, 50, and 100.
This is for a standard C++ program on cengage mindtap... I am completely lost!
1 2 + 2 1 + 1 3 + 3 4 +4 5 +5 (n-1) n-1 nt nExplanation / Answer
#include <iostream>
using namespace std;
// utility method for evaluating e value
double eValueUtil(int start, int n) {
// terminating recursion
if(start == n-1) {
return ((n-1) + (double)(n-1)/(2*n));
}
// else add this value and call next iteration
return start + start/eValueUtil(start + 1, n);
}
// evalue of n iterations
void eValue(int n) {
// using utility function
double val = 2 + 1/eValueUtil(1, n);
cout << "e(" << n << ") is " << val << endl;
}
int main() {
int n;
cout << "Enter value of n: ";
cin >> n;
eValue(n);
}
============
Output:
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.