Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1. The power series 2! 3! k! converges to e for all values of z. Write a functio

ID: 3588587 • Letter: 1

Question

1. The power series 2! 3! k! converges to e for all values of z. Write a function subprogram that uses this series to calculate values for e to five-decimal-place accuracy (i.e, using terms up to the first one that is less than 10-5 in absolute value) and that uses a function subprogram to calculate factorials. Use these subprograms in a main program to calculate and print a table of values for the function cosh(x) = 2 and also the corresponding values of the library function COSH for1 to 1 in increments of 0.1

Explanation / Answer

100 FORMAT(3X, A7, 5X, A16, 2X) PRINT 100, 'COSH(X)', 'LIBRARY COSH(X)' PRINT *, '==============================='

c ===========================================================

REAL FUNCTION COSH (G)

REAL G

DO 80 G = -1., 1., .1

COSH = COSH (G)

80 CONTINUE

END

c =============================================================

REAL FUNCTION HCOSN (POWER)

REAL POWER

HCOSN = (POWER + (1/POWER))/2

END

c ==============================================================

REAL FUNCTION POWER (X,I)

INTEGER FACTOR, I

REAL X

DO 20 X= -1., 1., .1

POWER = (X**I)/FACTOR

20 CONTINUE

END

c ===============================================

INTEGER FUNCTION FACTOR(N)

INTEGER N, I

FACTOR = 1

DO 10 I = 2, N

FACTOR = FACTOR * I

10 CONTINUE

END

c ==============================================================

130 FORMAT (3X, F5.5, 7X, F5.5)

PRINT 130, HCOSN, COSH

PAUSE

END