Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A database has five transactions. Let min sup = 60% and min conf = 80%. TID item

ID: 3582371 • Letter: A

Question

A database has five transactions. Let min sup = 60% and min conf = 80%.

TID        items

T100 = {M, O, N, K, E, Y}

T200 = {D, O, N, K, E, Y}

T300 = {M, A, K, E}

T400 = {M, U, C, K, Y}

T500 = {C, O, O, K, I, E}

(1) Find all frequent itemsets of a single item using the Apriori algorithm.

(2) Find all frequent itemsets of two items continuing the algorithm.

(3) Find all frequent itemsets of three items

(4) List all the strong association rules (with support s and confidence c) matching

the following metarule, where X is a variable representing customers, and itemi

denotes variables representing items (e.g., “A,” “B,”):

For all x in transaction, buys (X, item1) ^ buys (X, item2) => buys(X, item3) [s, c]

Explanation / Answer

List of all distinct items in database = ['A', 'C', 'D', 'E', 'I', 'K', 'M', 'N', 'O', 'U', 'Y']
there are total 11 items.
Given min sup = 60% and min conf = 80%
So, min sup = 60% = 60/100 * (5 transactions) = 3 transactions
Definitions:
a)Support(Item-set) = No. of transactions where all items in 'Item-set' are purchased.
b)Frequent Item-sets: A Item-set is said to be frequent if Support(Item-set) >= min-support.

(1) Find all frequent itemsets of a single item using the Apriori algorithm.
    Ans:
        All Possible itemsets of a single item
        [A],[C],[D],[E],[I],[K],[M],[N],[O],[U],[Y]
        So,
        support([A]) = No. of transactions where A is purchased = 1
        support([C]) = No. of transactions where C is purchased = 2
        support([D]) = 1
        support([E]) = 4
        support([I]) = 1
        support([K]) = 5
        support([M]) = 3
        support([N]) = 2
        support([O]) = 3
        support([U]) = 1
        support([Y]) = 3
        So, all frequent itemsets of a single item = [E],[K],[M],[O],[Y] (as their support is >= min support)  
Claim-1: If a item-set is not frequent then any superset of X is also not frequent.
So for finding all frequent itemsets of two items, we need to consider [E],[K],[M],[O],[Y] only.
(2) Find all frequent itemsets of two items continuing the algorithm.
    Ans:
        All Possible itemsets of a two items
        support(EK) = 4
        support(EM) = 2
       support(EO) = 3
       support(EY) = 2
       support(KM) = 2
       support(KO) = 3
       support(KY) = 3
       support(MO) = 1
       support(MY) = 2
       support(OY) = 2
       so, all frequent itemsets of two items are [E,K], [E,O], [K,O], [K,Y].

(3) Find all frequent itemsets of three items
    Ans:
        All Possible itemsets of three items
        support(EKM) = 2
       support(EKO) = 3
       support(EKY) = 2
       support(EMO) = (<=2)
       support(EMY) = (<=2)
       support(EOY) = (<=2)
       support(KMO) = (<=2)
       support(KMY) = (<=2)
       support(KOY) = (<=2)
       support(MOY) = (<=1)
       So, [E,K,O] is the only one frequent itemsets of three items.
(4)
Definitions:
a) Confidence(item-set1 item-set2) = Support(X Y)/Support(X).
b) There exists association rule item-set1 item-set2 if (item-set1 item-set2) is
      1) frequent Item-set and
       2) Confidence (item-set1 item-set2) > min-confidence
    Question is asking association rule of the following form
    (X, item1) ^ buys (X, item2) => buys(X, item3) [s, c]  
    So, we have only one frequent itemset of length 3,
    So,for itemset [E,O,K] there are three possibilites
     1)[E,O] K
       CONF = support([E,O,K])/sopport([E,O])
            =3/3 = 100%
        Hence [E,O] K is a association rule  
     2)[O,K] E
       CONF = support([E,O,K])/sopport([O,K])
            = 3/3 = 100%
        Hence [O,K] E is a association rule  
     3)[E,K] O
       CONF = support([E,O,K])/sopport([E,K])
            = 3/4 = 75%
       As 75% < 80%, [E,K] O is not a association rule.   

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote