Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

What\'s the best MATLAB function to use to get the smoothest, most accurate curv

ID: 3564593 • Letter: W

Question

What's the best MATLAB function to use to get the smoothest, most accurate curve and remove the noise from this set of data? (Please provide code and plot the curves) I need the BEST function because I need to have certain, clear, and distinct peaks. Thanks.

Data with Random Noise Generated:

0.0286
-0.1235
0.4010
0.0747
0.2815
-0.1137
-0.1665
-0.1814
0.0967
0.0850
-0.1449
-0.3425
-0.2378
0.0034
0.1291
0.3039
0.1203
0.1306
-0.0319
-0.1242
-0.3406
0.0659
-0.2308
-0.4602
0.2101
-0.0140
0.0703
-0.2007
-0.0374
0.0223
0.3909
0.1157
-0.1244
-0.0518
-0.1956
0.1899
-0.0688
0.2332
-0.0512
-0.0188
-0.1901
-0.1415
0.1933
0.1787
-0.0131
0.2043
0.0461
-0.2382
-0.1620
-0.1358
-0.0636
0.0354
0.0320
-0.1139
0.0547
-0.1802
0.0550
-0.3273
-0.0273
0.1590
0.0252
0.2431
-0.0449
0.0338
-0.0785
-0.0471
0.1205
0.0676
-0.2668
-0.0159
0.0890
-0.0862
-0.1773
0.0380
0.1228
0.1734
0.4329
0.1940
0.0841
0.0994
0.1431
0.1094
-0.0400
-0.2921
0.0208
-0.2362
-0.0034
-0.0544
0.0108
0.3264
0.2634
0.4061
-0.0030
-0.2363
0.3119
0.1774
0.1342
-0.1114
0.1338
-0.0238
0.1051
0.0169
0.0642
0.4522
0.5221
0.0908
0.1014
0.3239
0.3504
-0.0576
0.0895
0.0330
0.3200
0.4697
0.1850
0.3615
0.1300
0.1845
0.4889
0.3026
0.3663
0.4237
0.0838
0.4158
0.1349
0.4359
0.4174
0.4929
0.3294
0.3816
0.1658
-0.0228
0.1390
0.3410
0.1329
0.2262
0.3838
0.4625
0.1656
0.0249
0.0375
0.4814
-0.1792
0.1709
0.0693
0.1015
-0.2017
-0.1556
0.3688
-0.2220
0.3415
0.0148
0.0200
-0.0086
-0.1119
0.1658
-0.0219
0.0988
0.1949
0.0820
0.0128
0.2412
-0.1951
-0.1636
-0.0283
-0.3216
0.1034
-0.1017
-0.0596
-0.1000
0.3471
-0.1062
-0.0028
-0.0872
0.0284
0.0081
0.1289
-0.2078
-0.0605
-0.3172
0.0461
0.1637
0.0713
-0.1462
0.0897
-0.0926
-0.0281
0.0849
-0.2845
-0.1555
-0.0779
0.0463
-0.0394
-0.0276
-0.0843
0.3197
0.0560
-0.1694
0.0730
-0.3729
0.1590
-0.3770
0.1043
-0.2931
-0.0381
-0.2293
0.0397
-0.1175
-0.0777
0.3016
-0.1766
0.1482
-0.1339
-0.0700
0.2218
0.0835
0.0773
0.2016
-0.1027
-0.0291
0.0692
0.0394
0.1601
-0.3073
-0.1585
-0.2203
-0.2701
0.1027
-0.0773
-0.1845
-0.0349
-0.3036
-0.2136
0.0546
-0.3021
0.2626
-0.2296
-0.0096
-0.1266
-0.0297
0.0720
0.2122
0.2085
-0.0801
-0.0390
0.0336
0.2792
0.1450
-0.2997
-0.1432
-0.2133
-0.1831
0.1039
-0.1061
0.2517
0.0601
0.0194
0.3232
-0.1183
0.0054
0.0377
-0.1931
-0.0609
-0.3545
0.0596
0.1966
-0.0947
-0.5433
0.1566
-0.4037
-0.4067
-0.3356
-0.2269
-0.4110
0.3824
-0.2867
0.0644
0.0721
-0.1439
-0.0963
0.4280
0.3400
0.1085
0.3458
0.4734
0.7051
0.8648
0.9677
1.0562
1.0227
1.3381
0.9563
1.5074
1.2827
1.4189
1.1057
0.9705
1.1432
1.0599
0.9764
0.8295
0.8073
0.6661
0.3343
0.1225
0.3380
0.1911
0.1581
-0.2683
-0.1932
-0.1063
0.0431
-0.4411
-0.2390
-0.2442
-0.2444
-0.4396
-0.4371
-0.3811
-0.2594
-0.1690
0.1274
-0.4908
-0.0158
0.0163
-0.1612
-0.2880
-0.1639
-0.1454
0.0291
-0.0165
0.0768
-0.0531
0.0708
-0.0422
0.2928
-0.1393
0.1150
0.3835
-0.1098
0.0058
0.1295
0.0126
0.1649
0.0514
0.2388
-0.0378
-0.3018
0.1378
-0.0629
0.0082
0.1102
-0.3387
-0.0627
0.1026
-0.3983
-0.1950
-0.1426
-0.0848
0.1161
-0.2320
-0.0220
0.1105
0.0821
0.0111
0.0971
0.2751
0.0219
0.2839
0.3143
-0.0841
-0.0685
0.1061
-0.1312
-0.2891
0.0475
0.0760
0.0344
-0.1680
-0.0685
0.1799
0.0314
-0.0338
-0.1002
-0.0634
0.0052
0.0531
-0.1226
-0.1739
0.0077
0.0285
0.0060
-0.1075
-0.2899
-0.0300
0.1512
0.3162
0.0902
0.0587
0.0808
0.0189
-0.1419
-0.1064
-0.2005
-0.0254
0.0321
0.1468
-0.0714
-0.1674
0.0571
-0.2508
-0.1821
-0.2803
0.0103
0.0571
-0.1761
-0.0408
0.1131
0.0406
-0.0486
0.0110
-0.0298
-0.2240
0.0885
0.1355
0.0442
0.0614
0.0690
0.0598
-0.0794
0.0699
0.0865
0.2404
-0.2953
-0.2675
0.1145
0.1978
0.0552
-0.2091
-0.0999
0.1770
0.2152
0.1236
-0.2571
0.0790
-0.3393
0.0395
-0.0210
0.1325
-0.0223
-0.1809
-0.0525
-0.0214
-0.2614
0.0538
-0.1540
0.1946
0.0849
-0.0872
-0.1947
-0.2937
0.1562
0.2300
0.0466
-0.1030
0.0832
0.0094
0.0477
0.3014
-0.0355
0.0216
-0.2025
-0.1221
0.1851
-0.0888
-0.3134
0.1089
0.1132
0.1050
0.1611
-0.0980
0.0836
-0.0206
0.1026
-0.1241
0.0782
-0.0016
0.3768
0.0203
0.1179
0.1283
-0.0359
0.2624
0.1310
0.2435
-0.0498
-0.0682
0.1726
0.2026
0.1959
0.2650
0.1120
0.0862
-0.0719
0.1335
0.2225
0.3495
0.0102
0.2285
0.2812
0.3504
0.1433
-0.0145
0.1090
0.0519
0.1951
-0.0799
0.0999
0.1204
0.3664
0.4120
0.3414
0.1439
0.1660
-0.0226
0.5167
-0.0275
0.4484
0.1128
0.3306
0.2897
0.4763
0.5916
0.3112
0.5963
0.1224
0.1449
0.5014
0.4903
0.4288
0.1221
0.5508
0.6352
0.4546
0.4036
0.2567
0.4062
0.6287
0.4669
0.4534
0.5568
0.3271
0.3953
0.2475
0.1886
0.4052
0.6204
0.3973
0.6290
0.3297
0.4603
0.3516
0.5619
0.5833
0.3902
0.3355
-0.0205
0.2261
0.6338
0.8324
0.5502
0.4823
0.5662
0.1795
0.6498
0.4928
0.3095
0.4518
0.4571
0.4578
0.6008
0.4495
0.4417
0.6667
0.0105
0.4684
0.1412
0.4233
0.6490
0.0713
0.3787
0.2155
0.4871
0.3881
0.1134
0.4217
0.4452
0.1303
0.1844
0.5219
0.2068
0.4145
0.5104
0.4033
0.4754
0.1425
0.3673
0.4677
0.3956
0.5012
-0.1217
0.3068
0.1912
0.1919
0.3450
0.1359
0.2350
-0.0354
0.1423
0.2041
0.1041
0.0114
0.2570
0.3535
0.1521
-0.1425
0.0633
0.0352
-0.3954
-0.0083
0.1468
0.1548
-0.3260
-0.0259
0.1603
-0.0978
0.1280
-0.1766
0.1662
0.2459
0.1421
-0.0312
-0.0079
-0.1117
-0.0765
0.1088
0.0144
0.0263
0.1513
0.1016

Example Text file of what the data should be close to (it looks like an EKG)

0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
-1.0000000e-04
1.0000000e-04
3.1000000e-03
7.7000000e-03
1.2400000e-02
1.7500000e-02
2.2800000e-02
2.8500000e-02
3.4500000e-02
4.0900000e-02
4.7600000e-02
5.4600000e-02
6.1900000e-02
6.9500000e-02
7.7400000e-02
8.5500000e-02
9.3900000e-02
1.0250000e-01
1.1130000e-01
1.2020000e-01
1.2930000e-01
1.3850000e-01
1.4770000e-01
1.5700000e-01
1.6630000e-01
1.7550000e-01
1.8450000e-01
1.9340000e-01
2.0200000e-01
2.1030000e-01
2.1830000e-01
2.2570000e-01
2.3270000e-01
2.3920000e-01
2.4520000e-01
2.5060000e-01
2.5540000e-01
2.5950000e-01
2.6290000e-01
2.6570000e-01
2.6780000e-01
2.6910000e-01
2.7000000e-01
2.6960000e-01
2.6860000e-01
2.6700000e-01
2.6450000e-01
2.6150000e-01
2.5750000e-01
2.5290000e-01
2.4750000e-01
2.4150000e-01
2.3500000e-01
2.2810000e-01
2.2060000e-01
2.1280000e-01
2.0470000e-01
1.9630000e-01
1.8780000e-01
1.7910000e-01
1.7020000e-01
1.6130000e-01
1.5240000e-01
1.4350000e-01
1.3460000e-01
1.2580000e-01
1.1720000e-01
1.0870000e-01
1.0040000e-01
9.2300000e-02
8.4400000e-02
7.6800000e-02
6.9500000e-02
6.2400000e-02
5.5600000e-02
4.9300000e-02
4.3200000e-02
3.7500000e-02
3.2100000e-02
2.7100000e-02
2.2500000e-02
1.8200000e-02
1.4100000e-02
1.0400000e-02
6.9000000e-03
3.8000000e-03
9.0000000e-04
-1.0000000e-04
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
1.0000000e-04
-1.4000000e-03
-3.7000000e-03
-5.7000000e-03
-7.6000000e-03
-9.1000000e-03
-1.0600000e-02
-1.2100000e-02
-1.3500000e-02
-1.5100000e-02
-1.6800000e-02
-1.8900000e-02
-2.1200000e-02
-2.4100000e-02
-2.7700000e-02
-3.1700000e-02
-3.6700000e-02
-4.2700000e-02
-5.0200000e-02
-5.9000000e-02
-6.9200000e-02
-8.0800000e-02
-9.3500000e-02
-1.0690000e-01
-1.2090000e-01
-1.3490000e-01
-1.4850000e-01
-1.6110000e-01
-1.7200000e-01
-1.8020000e-01
-1.8500000e-01
-1.8520000e-01
-1.7990000e-01
-1.6850000e-01
-1.5000000e-01
-1.2400000e-01
-9.0100000e-02
-4.7500000e-02
3.9000000e-03
6.4400000e-02
1.3430000e-01
2.1340000e-01
3.0080000e-01
3.9470000e-01
4.9310000e-01
5.9370000e-01
6.9420000e-01
7.9260000e-01
8.8590000e-01
9.7070000e-01
1.0443000e+00
1.1032000e+00
1.1438000e+00
1.1641000e+00
1.1642000e+00
1.1443000e+00
1.1056000e+00
1.0491000e+00
9.7670000e-01
8.9080000e-01
7.9360000e-01
6.8850000e-01
5.7880000e-01
4.6870000e-01
3.6120000e-01
2.5790000e-01
1.6100000e-01
7.1600000e-02
-9.2000000e-03
-8.0300000e-02
-1.4120000e-01
-1.9180000e-01
-2.3190000e-01
-2.6190000e-01
-2.8250000e-01
-2.9430000e-01
-2.9800000e-01
-2.9450000e-01
-2.8530000e-01
-2.7140000e-01
-2.5400000e-01
-2.3380000e-01
-2.1170000e-01
-1.8890000e-01
-1.6590000e-01
-1.4360000e-01
-1.2250000e-01
-1.0340000e-01
-8.6700000e-02
-7.1900000e-02
-5.9100000e-02
-4.8300000e-02
-3.9100000e-02
-3.1500000e-02
-2.5200000e-02
-2.0200000e-02
-1.6200000e-02
-1.3000000e-02
-1.0400000e-02
-8.3000000e-03
-6.5000000e-03
-4.8000000e-03
-3.2000000e-03
-1.7000000e-03
-3.0000000e-04
1.0000000e-04
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
1.1000000e-03
2.6000000e-03
4.0000000e-03
5.6000000e-03
7.2000000e-03
8.8000000e-03
1.0600000e-02
1.2500000e-02
1.4500000e-02
1.6600000e-02
1.8800000e-02
2.1100000e-02
2.3500000e-02
2.6100000e-02
2.8800000e-02
3.1600000e-02
3.4600000e-02
3.7700000e-02
4.0900000e-02
4.4300000e-02
4.8000000e-02
5.1700000e-02
5.5600000e-02
5.9800000e-02
6.4000000e-02
6.8500000e-02
7.3100000e-02
7.7900000e-02
8.3000000e-02
8.8200000e-02
9.3700000e-02
9.9300000e-02
1.0510000e-01
1.1120000e-01
1.1740000e-01
1.2390000e-01
1.3050000e-01
1.3730000e-01
1.4430000e-01
1.5140000e-01
1.5880000e-01
1.6640000e-01
1.7420000e-01
1.8210000e-01
1.9000000e-01
1.9820000e-01
2.0660000e-01
2.1510000e-01
2.2360000e-01
2.3220000e-01
2.4100000e-01
2.4990000e-01
2.5870000e-01
2.6770000e-01
2.7660000e-01
2.8560000e-01
2.9460000e-01
3.0360000e-01
3.1250000e-01
3.2130000e-01
3.3010000e-01
3.3880000e-01
3.4740000e-01
3.5580000e-01
3.6410000e-01
3.7220000e-01
3.8010000e-01
3.8780000e-01
3.9520000e-01
4.0230000e-01
4.0930000e-01
4.1580000e-01
4.2200000e-01
4.2790000e-01
4.3340000e-01
4.3860000e-01
4.4330000e-01
4.4770000e-01
4.5170000e-01
4.5520000e-01
4.5830000e-01
4.6100000e-01
4.6320000e-01
4.6500000e-01
4.6630000e-01
4.6730000e-01
4.6760000e-01
4.6990000e-01
4.7360000e-01
4.7650000e-01
4.7920000e-01
4.8120000e-01
4.8300000e-01
4.8410000e-01
4.8480000e-01
4.8520000e-01
4.8440000e-01
4.8380000e-01
4.8240000e-01
4.8060000e-01
4.7840000e-01
4.7570000e-01
4.7270000e-01
4.6910000e-01
4.6520000e-01
4.6090000e-01
4.5610000e-01
4.5110000e-01
4.4580000e-01
4.4010000e-01
4.3410000e-01
4.2770000e-01
4.2110000e-01
4.1420000e-01
4.0700000e-01
3.9960000e-01
3.9190000e-01
3.8400000e-01
3.7590000e-01
3.6770000e-01
3.5930000e-01
3.5060000e-01
3.4180000e-01
3.3290000e-01
3.2390000e-01
3.1480000e-01
3.0550000e-01
2.9620000e-01
2.8680000e-01
2.7740000e-01
2.6790000e-01
2.5850000e-01
2.4900000e-01
2.3960000e-01
2.3020000e-01
2.2080000e-01
2.1150000e-01
2.0230000e-01
1.9320000e-01
1.8430000e-01
1.7540000e-01
1.6680000e-01
1.5830000e-01
1.5000000e-01
1.4180000e-01
1.3390000e-01
1.2620000e-01
1.1850000e-01
1.1120000e-01
1.0400000e-01
9.6900000e-02
9.0100000e-02
8.3300000e-02
7.6900000e-02
7.0600000e-02
6.4500000e-02
5.8600000e-02
5.2800000e-02
4.7200000e-02
4.1700000e-02
3.6500000e-02
3.1500000e-02
2.6600000e-02
2.1700000e-02
1.7200000e-02
1.2700000e-02
8.5000000e-03
4.3000000e-03
6.0000000e-04
-2.0000000e-04
0.0000000e+00
-1.0000000e-04
0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
-0.0000000e+00
0.0000000e+00
-0.0000000e+00
0.0000000e+00

Explanation / Answer

% declare y= data+noise , what value you have given

yy = smooth(y,'sgolay',3) % this will give you smooth plot

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote