Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use at least 10000 simulations to answer the following question. A rat is trappe

ID: 3556598 • Letter: U

Question

Use at least 10000 simulations to answer the following question.

A rat is trapped in a maze. Initially he has to choose one of two directions. If he goes to the right, then he will wander around in the maze for three minutes and will then return to his initial position. If he goes to the left, then with probability (1/3) he will depart the maze after two minutes of traveling, and with probability (2/3) he will return to his initial position after five minutes of traveling. Assuming that the rat is at all times equally likely to go to the left or the right, find

a) the expected number of minutes that he will be trapped in the maze.

b) the standard deviation of the amount of time the rat spends in the maze.

Explanation / Answer

Simulation approach (BASIC)

5 DIM t(10000)                                preliminary

10 j = 0                                    statements

15 RANDOMIZE

20 FOR I = 1 TO 10000

25 t(I) = 0

30 y = INT(RND * 2) + 1          randomly chooses 1 or 2

35 IF y = 2 THEN GOTO 50    2 = left, 1 = right     

40 t(I) = 3 + t(I)                        chose 1 = right. Add 3 to counter

45 GOTO 30                            and return to beginning of maze

50 b = INT(RND * 3) + 1          chose 2 = left. Now randomly                                                                 chooses 1,2, or 3

55 IF b = 1 GOTO 70               1 = exit; 2 or 3 = wander

60 t(I) = 5 + t(I)                        chose 2 or 3. Add 5 to counter

65 GOTO 30                            and return to beginning of maze

70 t(I) = t(I) + 2                        chose 1. Add 2 to counter & exit

75 j = j + t(I)                             advance trial counter

80 NEXT I                                start new trial

85 PRINT j / 10000                  expected number of minutes,

based on 10,000 trials

%macro montecar(iter);

%do ii = 1 %to &iter;

data one;

k = 0;

t = 0;

do until (k gt 0);

   w=ranuni(0);

   x=ranuni(0);

   y= int(x*2)+1;         /*pick left or right*/

    if y = 1 then do;     /*if left*/

     b = int(w*3)+1;      /*wander or exit*/

      if b = 1 then do;   /*exit*/

       t = t+2;

       k = 1;

      end;

      else t = t+5;       /*wander*/

    end;

    else t = t+3;         /*if right*/

end;

   output;

proc append base=output;

%end;

%mend montecar;

%montecar(5000);

data test; set output;

proc means; var t;

Analysis Variable : t

N            Mean          Std Dev                Minimum         Maximum

-----------------------------------------------------------------

    5      14.0000000      13.4721936       2                 37

-----------------------------------------------------------------

N            Mean           Std Dev             Minimum         Maximum

-------------------------------------------------------------------

100      23.2100000      20.8942963       2               89

-------------------------------------------------------------------

   N            Mean         Std Dev         Minimum         Maximum

--------------------------------------------------------------------

1000      21.2550000      20.2002977       2             122

--------------------------------------------------------------------

   N            Mean         Std Dev         Minimum         Maximum

--------------------------------------------------------------------

5000      20.9658000      20.8374823       2             191

--------------------------------------------------------------------