Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

import java.util.Iterator; import java.util.NoSuchElementException; public inter

ID: 3546827 • Letter: I

Question


import java.util.Iterator;

import java.util.NoSuchElementException;



public interface DictionaryADT<K,V> {


// Returns true if the dictionary has an object identified by

// key in it, otherwise false.

public boolean contains(K key);


// Adds the given key/value pair to the dictionary. Returns

// false if the dictionary is full, or if the key is a duplicate.

// Returns true if addition succeeded.

public boolean insert(K key, V value);


// Deletes the key/value pair identified by the key parameter.

// Returns true if the key/value pair was found and removed,

// otherwise false.

public boolean remove(K key);


// Returns the value associated with the parameter key. Returns

// null if the key is not found or the dictionary is empty.

public V getValue(K key);


// Returns the key associated with the parameter value. Returns

// null if the value is not found in the dictionary. If more

// than one key exists that matches the given value, returns the

// first one found.

public K getKey(V value);


// Returns the number of key/value pairs currently stored

// in the dictionary

public int size();


// Returns true if the dictionary is at max capacity

public boolean isFull();


// Returns true if the dictionary is empty

public boolean isEmpty();


// Returns the Dictionary object to an empty state.

public void clear();


// Returns an Iterator of the keys in the dictionary, in ascending

// sorted order. The iterator must be fail-fast.

public Iterator<K> keys();


// Returns an Iterator of the values in the dictionary. The

// order of the values must match the order of the keys.

// The iterator must be fail-fast.

public Iterator<V> values();

}

package data_structures;


import java.util.Iterator;

import java.util.NoSuchElementException;


public class LinkedListDS<E> implements ListADT<E> {


private Node<E> head,tail;

private int currentSize;


public LinkedListDS() {

head = tail = null;

currentSize = 0;

}


class Node<E> { //creates Node and has nested constructor

E data;

Node<E> next;


public Node(E data) {

this.data = data;

next = null;

}

}


public void addFirst(E obj) {

Node<E> newNode = new Node(obj);

if (head == null)

head = tail = newNode;

else {

newNode.next = head;

head = newNode;

}

currentSize++;

}


public void addLast(E o) {

Node<E> newNode = new Node(o);

if (head == null)

head = tail = newNode;

else {

tail.next = newNode;

tail = newNode;

}

currentSize++;

}


public E removeFirst() {

if (head == null)

return null;

E tmp = head.data;

head = head.next;

if (head == null) //Checking if the linked list is empty after the execution of the function

tail = null;

currentSize--;

return tmp;

}


public E removeLast() {

Node<E> previous = null;

Node<E> current = head;

if (current == null)

return null;

while (current.next != null) {

previous = current;

current = current.next;

}

if (previous == null) //If the linked list is one element call back to the previous function

return removeFirst();

previous.next = null;

tail = previous;

currentSize--;

return current.data;

}


public E peekFirst() {

if (head == null )

return null;

else

return head.data;

}


public E peekLast() {

if (tail == null)

return null;

else

return tail.data;

}


public E find(E obj) {

if (head == null)

return null;

Node<E> current = head;

while(current != null && ((Comparable<E>)obj).compareTo(current.data) != 0) {

current = current.next;

}

if(current == null) return null;

return current.data;

}


public boolean remove(E obj) {

Node<E> previous = null, current = head;

while (current != null && ((Comparable<E>)obj).compareTo(current.data) != 0) {

previous = current;

current = current.next;

}

if (current == null)

return false;

if (current == head)

removeFirst(); //Use existing function for removing head with remove function

else if (current == tail)

removeLast(); //Use existing function for removing tail with remove function

else {

previous.next = current.next;

currentSize--;

}

return true;

}


public void makeEmpty() {

head = tail = null;

currentSize = 0;

}


public boolean contains(E obj) {

Node<E> current = head;

if(current == null) //Checks if linked list is empty

return false;

while (current != null && ((Comparable<E>)obj).compareTo(current.data) != 0)

current = current.next;

if (current == null)

return false;

return true;

}


public boolean isEmpty() {

if (currentSize==0)

return true;

return false;

}


public boolean isFull() {

return false;

}


public int size() {

return currentSize;

}


public Iterator<E> iterator() {

return new IteratorHelper();

}


class IteratorHelper implements Iterator<E> {

Node<E> iteratorPtr;


public IteratorHelper() {

iteratorPtr = head;

}


public boolean hasNext() {

return iteratorPtr != null;

}


public E next() { //establishing the next function

if (!hasNext())

throw new NoSuchElementException(); //checks if next exists

E temp = iteratorPtr.data;

iteratorPtr = iteratorPtr.next;

return temp;

}

public void remove () {

throw new UnsupportedOperationException();

}

}

}

Explanation / Answer


import java.util.NoSuchElementException;


public class BST<Key extends Comparable<Key>, Value> {

private Node root;   


private class Node {

private Key key; // sorted by key

private Value val;   

private Node left, right;

private int N; // number of nodes in subtree


public Node(Key key, Value val, int N) {

this.key = key;

this.val = val;

this.N = N;

}

}


public boolean isEmpty() {

return size() == 0;

}


public int size() {

return size(root);

}


private int size(Node x) {

if (x == null) return 0;

else return x.N;

}


public boolean contains(Key key) {

return get(key) != null;

}


public Value get(Key key) {

return get(root, key);

}


private Value get(Node x, Key key) {

if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp < 0) return get(x.left, key);

else if (cmp > 0) return get(x.right, key);

else return x.val;

}


public void put(Key key, Value val) {

if (val == null) { delete(key); return; }

root = put(root, key, val);

assert check();

}


private Node put(Node x, Key key, Value val) {

if (x == null) return new Node(key, val, 1);

int cmp = key.compareTo(x.key);

if (cmp < 0) x.left = put(x.left, key, val);

else if (cmp > 0) x.right = put(x.right, key, val);

else x.val = val;

x.N = 1 + size(x.left) + size(x.right);

return x;}


public void deleteMin() {

if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");

root = deleteMin(root);

assert check();

}


private Node deleteMin(Node x) {

if (x.left == null) return x.right;

x.left = deleteMin(x.left);

x.N = size(x.left) + size(x.right) + 1;

return x;

}


public void deleteMax() {

if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");

root = deleteMax(root);

assert check();

}


private Node deleteMax(Node x) {

if (x.right == null) return x.left;

x.right = deleteMax(x.right);

x.N = size(x.left) + size(x.right) + 1;

return x;

}


public void delete(Key key) {

root = delete(root, key);

assert check();

}


private Node delete(Node x, Key key) {

if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp < 0) x.left = delete(x.left, key);

else if (cmp > 0) x.right = delete(x.right, key);

else {

if (x.right == null) return x.left;

if (x.left == null) return x.right;

Node t = x;

x = min(t.right);

x.right = deleteMin(t.right);

x.left = t.left;

}

x.N = size(x.left) + size(x.right) + 1;

return x;

}


public Key min() {

if (isEmpty()) return null;

return min(root).key;

}


private Node min(Node x) {

if (x.left == null) return x;

else return min(x.left);

}


public Key max() {

if (isEmpty()) return null;

return max(root).key;

}


private Node max(Node x) {

if (x.right == null) return x;

else return max(x.right);

}


public Key floor(Key key) {

Node x = floor(root, key);

if (x == null) return null;

else return x.key;

}


private Node floor(Node x, Key key) {

if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp == 0) return x;

if (cmp < 0) return floor(x.left, key);

Node t = floor(x.right, key);

if (t != null) return t;

else return x;

}


public Key ceiling(Key key) {

Node x = ceiling(root, key);

if (x == null) return null;

else return x.key;

}


private Node ceiling(Node x, Key key) {

if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp == 0) return x;

if (cmp < 0) {

Node t = ceiling(x.left, key);

if (t != null) return t;

else return x;

}

return ceiling(x.right, key);

}


public Key select(int k) {

if (k < 0 || k >= size()) return null;

Node x = select(root, k);

return x.key;

}


// Return key of rank k.

private Node select(Node x, int k) {

if (x == null) return null;

int t = size(x.left);

if (t > k) return select(x.left, k);

else if (t < k) return select(x.right, k-t-1);

else return x;

}


public int rank(Key key) {

return rank(key, root);

}


// Number of keys in the subtree less than key.

private int rank(Key key, Node x) {

if (x == null) return 0;

int cmp = key.compareTo(x.key);

if (cmp < 0) return rank(key, x.left);

else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);

else return size(x.left);

}


public Iterable<Key> keys() {

return keys(min(), max());

}


public Iterable<Key> keys(Key lo, Key hi) {

Queue<Key> queue = new Queue<Key>();

keys(root, queue, lo, hi);

return queue;

}


private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {

if (x == null) return;

int cmplo = lo.compareTo(x.key);

int cmphi = hi.compareTo(x.key);

if (cmplo < 0) keys(x.left, queue, lo, hi);

if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);

if (cmphi > 0) keys(x.right, queue, lo, hi);

}


public int size(Key lo, Key hi) {

if (lo.compareTo(hi) > 0) return 0;

if (contains(hi)) return rank(hi) - rank(lo) + 1;

else return rank(hi) - rank(lo);

}



public int height() { return height(root); }

private int height(Node x) {

if (x == null) return -1;

return 1 + Math.max(height(x.left), height(x.right));

}



public Iterable<Key> levelOrder() {

Queue<Key> keys = new Queue<Key>();

Queue<Node> queue = new Queue<Node>();

queue.enqueue(root);

while (!queue.isEmpty()) {

Node x = queue.dequeue();

if (x == null) continue;

keys.enqueue(x.key);

queue.enqueue(x.left);

queue.enqueue(x.right);

}

return keys;

}


private boolean check() {

if (!isBST()) StdOut.println("Not in symmetric order");

if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");

if (!isRankConsistent()) StdOut.println("Ranks not consistent");

return isBST() && isSizeConsistent() && isRankConsistent();

}


private boolean isBST() {

return isBST(root, null, null);

}

private boolean isBST(Node x, Key min, Key max) {

if (x == null) return true;

if (min != null && x.key.compareTo(min) <= 0) return false;

if (max != null && x.key.compareTo(max) >= 0) return false;

return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);

}

private boolean isSizeConsistent() { return isSizeConsistent(root); }

private boolean isSizeConsistent(Node x) {

if (x == null) return true;

if (x.N != size(x.left) + size(x.right) + 1) return false;

return isSizeConsistent(x.left) && isSizeConsistent(x.right);

}


private boolean isRankConsistent() {

for (int i = 0; i < size(); i++)

if (i != rank(select(i))) return false;

for (Key key : keys())

if (key.compareTo(select(rank(key))) != 0) return false;

return true;

}

public static void main(String[] args) {

BST<String, Integer> st = new BST<String, Integer>();

for (int i = 0; !StdIn.isEmpty(); i++) {

String key = StdIn.readString();

st.put(key, i);

}


for (String s : st.levelOrder())

StdOut.println(s + " " + st.get(s));


StdOut.println();


for (String s : st.keys())

StdOut.println(s + " " + st.get(s));

}