g(x) = squareroot x g(x) = |x| h(x) = x^2 - 2x f(x) = x^4 + 5 f(x) = x^4 + 5, 0
ID: 3425838 • Letter: G
Question
g(x) = squareroot x g(x) = |x| h(x) = x^2 - 2x f(x) = x^4 + 5 f(x) = x^4 + 5, 0 lessthanorequalto x lessthanorequalto 2 r(t) = t^6 - 3, 0 lessthanorequalto t lessthanorequalto 5 r(t) = t^4 - 1 f(x) = 1/x^2 f(x) = 1/x Finding Values of an Inverse Function Assume that f is one-to-one function. If f(2) = 7, find^-l(7). If^-1(3) = - 1, find f(- 1). If f(5) = 18, find f^-1(18). If f^-1(4) =2, find f(2). If f(x) = 5 - 2 x, find f^-1(3). If g(x) = x^2 + 4x with x Greaterthanorequalto -2, find g^-1'(5).Explanation / Answer
25 a) f(2) = 7
in inverse function domain becomes the range and range becomes domain
so
f^-1 (7) = 2
b) f^-1(3) = -1
f(-1) = 3
26
a) f(5) = 18
f^-1 (18) = 5
b) f^-1 (4) = 2
f(2) = 4
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.