Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Some Internet companies sell a service that will boost a website\'s traffic by d

ID: 3390471 • Letter: S

Question

Some Internet companies sell a service that will boost a website's traffic by delivering additional unique visitors. Assume that one such company claims it can deliver 800 visitors a day. If this amount of website traffic is experienced, then the time between visitors has a mean of 1.80 minutes (or 0.5556 per minute). Assume that a website gets 800 visitors a day and that the time between visitors has an exponential distribution.

a. What is the probability that the time between two visitors is less than 2 minutes?
b. What is the probability that the time between two visitors is less than 3 minutes?
c. What is the probability that the time between two visitors is more than 4 minutes?

Explanation / Answer

a)

The mean of the distirbution is also the standard deviation, and is equal to 1/lambda:          
          
mean = standard deviation = 1/lambda =    1.8      
          
The left tailed area in an exponential distribution is          
          
Area = 1 - e^(-lambda*x)          
          
As          
          
x = critical value =    2      
          
          
Then          
          
Area =    0.670807012   [ANSWER]

******************

b)

The left tailed area in an exponential distribution is          
          
Area = 1 - e^(-lambda*x)          
          
As          
          
x = critical value =    3      
          
          
Then          
          
Area =    0.811124397   [ANSWER]

********************

c)

The right tailed area in an exponential distribution is          
          
Area = e^(-lambda*x)          
          
As          
          
x = critical value =    4      
          
          
Then          
          
Area =    0.108368023   [ANSWER]  
  
  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote