Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Suppose the returns on long-term government bonds are normally distributed. Assu

ID: 3388455 • Letter: S

Question

Suppose the returns on long-term government bonds are normally distributed. Assume long-term government bonds have a mean return of 6.4 percent and a standard deviation of 9.1 percent.

Requirement 1: What is the probability that your return on these bonds will be less than 11.8 percent in a given year? Use the NORMDIST function in Excel ® to answer this question.

Requirement 2: What range of returns would you expect to see 95 percent of the time?

Requirement 3: What range would you expect to see 99 percent of the time?

Explanation / Answer

1.

Here, we type

=NORMDIST(-11.8, 6.4, 9.1, 1)

Thus,

P(x<-11.8%) = 0.022750132 [ANSWER]

*****************

2.

As the middle area is          
          
Middle Area = P(x1<x<x2) =    0.95      
          
Then the left tailed area of the left endpoint is          
          
P(x<x1) = (1-P(x1<x<x2))/2 =    0.025      
          
Thus, the z score corresponding to the left endpoint, by table/technology, is          
          
z1 =    -1.959963985      
By symmetry,          
z2 =    1.959963985      
          
As          
          
u = mean =    6.4      
s = standard deviation =    9.1      
          
Then          
          
x1 = u + z1*s =    -11.43567226      
x2 = u + z2*s =    24.23567226      

Thus, we expect -11.44% to 24.24%. [ANSWER]

****************************

3.

As the middle area is          
          
Middle Area = P(x1<x<x2) =    0.99      
          
Then the left tailed area of the left endpoint is          
          
P(x<x1) = (1-P(x1<x<x2))/2 =    0.005      
          
Thus, the z score corresponding to the left endpoint, by table/technology, is          
          
z1 =    -2.575829304      
By symmetry,          
z2 =    2.575829304      
          
As          
          
u = mean =    6.4      
s = standard deviation =    9.1      
          
Then          
          
x1 = u + z1*s =    -17.04004666      
x2 = u + z2*s =    29.84004666      

Thus, we expect -17.04% to 29.84%. [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote