Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Data was collected between 1996 and 1998 on ear pierces and tattoos for male Pen

ID: 3387480 • Letter: D

Question

Data was collected between 1996 and 1998 on ear pierces and tattoos for male Penn State students. Assume these men represent a random sample of male Penn State students. The results were:

                              Tattoo?

Ear Pierce?

No

Yes

Total

No

381

43

424

Yes

99

42

141

Total

480

85

565

For both, give the desired interval and be sure to interpret the interval.

A) For the population of men without an ear piercing, find a 90% confidence interval for the proportion with a tattoo.

B) For the population of men with an ear piercing, find a 90% confidence interval for the proportion with a tattoo.

Ear Pierce?

No

Yes

Total

No

381

43

424

Yes

99

42

141

Total

480

85

565

Explanation / Answer

a)

Note that              
              
p^ = point estimate of the population proportion = x / n = 43/424 =   0.101415094          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.014660471          
              
Now, for the critical z,              
alpha/2 =   0.05          
Thus, z(alpha/2) =    1.644853627          
Thus,              
Margin of error = z(alpha/2)*sp =    0.024114329          
lower bound = p^ - z(alpha/2) * sp =   0.077300765          
upper bound = p^ + z(alpha/2) * sp =    0.125529424          
              
Thus, the confidence interval is              
              
(   0.077300765   ,   0.125529424   ) [ANSWER]

*********************

b)

Note that              
              
p^ = point estimate of the population proportion = x / n = 42/141 =   0.29787234          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.038513552          
              
Now, for the critical z,              
alpha/2 =   0.05          
Thus, z(alpha/2) =    1.644853627          
Thus,              
Margin of error = z(alpha/2)*sp =    0.063349156          
lower bound = p^ - z(alpha/2) * sp =   0.234523185          
upper bound = p^ + z(alpha/2) * sp =    0.361221496          
              
Thus, the confidence interval is              
              
(   0.234523185   ,   0.361221496   ) [ANSWER]