Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A random sample of size n = 82 is taken from a population with mean = 15.6 and s

ID: 3383014 • Letter: A

Question

A random sample of size n = 82 is taken from a population with mean = 15.6 and standard deviation = 5 use Z chart

Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard deviation" to 4 decimal places.)

Expected value :

Standard error :

What is the probability that the sample mean is less than 16?

What is the probability that the sample mean falls between 16 and 15?

Explanation / Answer

The expected value is the same as the population mean,

Expected value = -15.6 [ANSWER]

***************

Meanwhile,

Standard error = sigma/sqrt(n) = 5/sqrt(82) = 0.55215763 [ANSWER]

***************

LESS THAN -16:

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    -16      
u = mean =    -15.6      
n = sample size =    82      
s = standard deviation =    5      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    -0.72      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.72   ) =    0.2358 [ANSWER]

*****************

BETWEEN -16 AND -15:

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    -16      
x2 = upper bound =    -15      
u = mean =    -15.6      
n = sample size =    82      
s = standard deviation =    5      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u) * sqrt(n) / s =    -0.72      
z2 = upper z score = (x2 - u) * sqrt(n) / s =    1.09      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.2358      
P(z < z2) =    0.8621      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.6263   [ANSWER]  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote