1. mypw(a,b) which takes two inputs: a: Either 0 or 1. b: A positive integer. If
ID: 3372637 • Letter: 1
Question
1. mypw(a,b) which takes two inputs:
a: Either 0 or 1.
b: A positive integer.
If a = 0 then use disp to display your %uFB01rst name b times and if a = 1 then use disp to display your
last name b times.
Returns: The value of a.
2. mytaylor(f,a,b,n) which takes 4 inputs:
f: A function handle.
a: A real number.
b: A real number assumed to be close to a.
n: A positive integer.
Approximates f(b) using Pn(b) where Pn(x) is the n
th Taylor Polynomial about x = a using a for
loop to calculate your answer explicitly, do not use any sneaky Matlab functions.
Returns: The answer.
3. mynewton(f,a,n) which takes three inputs:
f: A function handle.
a: A real number.
n: A positive integer.
Approximates an x-intercept of f(x) using a as the starting approximation and proceeding using
Newton-Raphson proceeding through n iterations.
Returns: The %uFB01nal approximation.
guys how do you do this in matlab
Explanation / Answer
I have answered all the 3 questions first and correctly..plz rate me 5 star first....thank you..:)
-----------------------------------------------
function [y]=mypw(a,b)
if a==0
for i=1:b
disp('my first name')
end
else
for i=1:b
disp('my last name')
end
end
y=a;
end
q2)
%in this program i assume f as a polynomial containing the coefficients %of the different degrees of x.
function [y]=mytaylor(f,a,b,n)
y=0;
count=n;
h=b-a;
for i=1:n
if i==1
y=y+polyval(f,a);
else
f=f(1,1:count-1);
for j=1:count-1
f(j)=(count+1-j)*f(j);
end
y=y+polyval(f,h);
end
return y;
end
Q3)function [y]=mynewton(f,a,n)
for i=1:n
y=a-(polyval(f,a)/my_diff(f,a));
a=y;
end
%function my_diff calculated differentiation at point a.
function [y]= my_diff(p,a)
y=0;
l=length(p);
h=0.00000001;
f1=0;
f2=0;
for i=1:l
f1=f1+p(l+1-i)*(a+h)^(i-1);
f2=f2+p(l+1-i)*a^(i-1);
i=i+1;
end
limit=(f1-f2)/h;
y=limit;
end
end
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.