Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

8. 0.64/1 points | Previous Answers BBUnderStat11 7.4.014 My Notes Ask Your Teac

ID: 3360382 • Letter: 8

Question

8. 0.64/1 points | Previous Answers BBUnderStat11 7.4.014 My Notes Ask Your Teacher Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric Weights (in Ib) of pro football players: xii n- 21 246 263 254 251 244 276 240 265 257 252 282 256 250 264 270 275 245 275 253 265 271 Weights (in Ib) of pro basketball players: x2i n2-19 202 200 220 210 193 215 222 216 228 207 225 208 195 191 207 196 182 193 201 (a) Use a calculator with mean and standard deviation keys to calculate x1, s1, x2, and s2. (Round your answers to one decimal place.) X1 = 259.7 s1= 145.3 x2205.8 s2= 168.1 (b) Let 11 be the population mean for X1 and letH2 be the population mean for x2. Find a 99% confidence interval for 1-2-(Round your answers to one decimal place.) ower limit 43.2 upper limit 64.7

Explanation / Answer

Solution:

Part a

First of all we have to find mean and standard deviation for given two samples.

Mean = X/n

Var = (X – mean)^2/(n – 1)

SD = sqrt(Var)

Mean and SD for weights of football players is given as below:

No.

X1

(X1 - mean)

(X1 - mean)^2

1

246

-13.7143

188.0820245

2

263

3.2857

10.79582449

3

254

-5.7143

32.65322449

4

251

-8.7143

75.93902449

5

244

-15.7143

246.9392245

6

276

16.2857

265.2240245

7

240

-19.7143

388.6536245

8

265

5.2857

27.93862449

9

257

-2.7143

7.36742449

10

252

-7.7143

59.51042449

11

282

22.2857

496.6524245

12

256

-3.7143

13.79602449

13

250

-9.7143

94.36762449

14

264

4.2857

18.36722449

15

270

10.2857

105.7956245

16

275

15.2857

233.6526245

17

245

-14.7143

216.5106245

18

275

15.2857

233.6526245

19

253

-6.7143

45.08182449

20

265

5.2857

27.93862449

21

271

11.2857

127.3670245

Total

5454

2916.285714

Mean

259.7143

Var

145.8142857

SD

12.07535862

Mean = X/n = 5454/21 = 259.7143

Var = (X – mean)^2/(n – 1) = 2916.285714/(21 – 1) = 145.8142857

SD = sqrt(Var) = sqrt(145.8142857) = 12.07535862

X1bar = 259.7

S1 = 12.1

Now, we have to find mean and SD for weights of basketball players.

No.

X2

(X1 - mean)

(X1 - mean)^2

1

202

-3.8421

14.76173241

2

200

-5.8421

34.13013241

3

220

14.1579

200.4461324

4

210

4.1579

17.28813241

5

193

-12.8421

164.9195324

6

215

9.1579

83.86713241

7

222

16.1579

261.0777324

8

216

10.1579

103.1829324

9

228

22.1579

490.9725324

10

207

1.1579

1.34073241

11

225

19.1579

367.0251324

12

208

2.1579

4.65653241

13

195

-10.8421

117.5511324

14

191

-14.8421

220.2879324

15

207

1.1579

1.34073241

16

196

-9.8421

96.86693241

17

182

-23.8421

568.4457324

18

193

-12.8421

164.9195324

19

201

-4.8421

23.44593241

Total

3911

2936.526316

Mean

205.8421

Var

163.1403509

SD

12.77264072

Mean = X/n = 3911/19 = 205.8421

Var = (X – mean)^2/(n – 1) = 2936.526316/(19 – 1) = 163.1403509

SD = sqrt(Var) = sqrt(163.1403509) = 12.77264072

X2bar = 205.8

S2 = 12.8

Part b

Confidence interval = (X1bar – X2bar) -/+ t*sqrt[(S1^2/n1)+(S2^2/n2)]

Confidence interval = (259.7 – 205.8) -/+ 2.7116*sqrt((12.1^2/21)+(12.8^2/19))

Confidence interval = 53.9 -/+ 2.7116* 3.949058452

Confidence interval = 53.9 -/+ 10.7082669

Lower limit = 53.9 - 10.7082669 = 43.2

Upper limit = 53.9 + 10.7082669 = 64.5

Lower limit = 43.2

Upper limit = 64.7

No.

X1

(X1 - mean)

(X1 - mean)^2

1

246

-13.7143

188.0820245

2

263

3.2857

10.79582449

3

254

-5.7143

32.65322449

4

251

-8.7143

75.93902449

5

244

-15.7143

246.9392245

6

276

16.2857

265.2240245

7

240

-19.7143

388.6536245

8

265

5.2857

27.93862449

9

257

-2.7143

7.36742449

10

252

-7.7143

59.51042449

11

282

22.2857

496.6524245

12

256

-3.7143

13.79602449

13

250

-9.7143

94.36762449

14

264

4.2857

18.36722449

15

270

10.2857

105.7956245

16

275

15.2857

233.6526245

17

245

-14.7143

216.5106245

18

275

15.2857

233.6526245

19

253

-6.7143

45.08182449

20

265

5.2857

27.93862449

21

271

11.2857

127.3670245

Total

5454

2916.285714

Mean

259.7143

Var

145.8142857

SD

12.07535862

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote