11111111111111111111111111111111111111111111111111111111111111111111111111111111
ID: 3341379 • Letter: 1
Question
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
Find the shortest distance, d, from the point (10, 0, -6) to the plane x + y + z = 6. d = Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = x3 - 108xy + 216 y3 local maximum value(s) local minimum value(s) saddle point(s) (x, y, f) =Explanation / Answer
d = (a x0+ b y0 + c z0)/ ( a^2 + b^2 + c^2 )^1/2
putiing values,
d = (10 +0 - 6-6)/( 1+1+1)^1/2
d = 2/(3^1/2)
d = 1.1547 unit
22222222222222222222222222222
f(x,y ) = x^3 -108 xy + 216 y^3
differentiating it w r t x and putting it zero,
0 = 3 x^2 - 108 y,
x^2 = 36 y ......(1)
now,
differentiating it w r t yand putting it zero
0 = -108 x + 648 y^2,
x = 6 y^2.......(2)
using 1 and 2 ,
36 y^4 = 36 y,
solving it,
y = 0,
y = 1,
so the critical points are,
(0,0) and (6,1)
now checking for , fxx and fyy
A =fxx = 6x ...and at both point it is +ve
now ,
C= fyy = 1296 y
B = fxy = -108
at (0,0),
A,B, C are zero
hence ,
AC- B^2 = 0,
hence,
test is inclusive at this point.
at (6,1),
A = 36 ,
B = -108
C = 1296
AC- B^2 = 36*1296 - 108^2
so ,
AC-B^2 = 34992
hence ,
AC-B^2 is +ve
and A is also positive,
so ,
(6,1) is a point of minimum.
and there is no saddle point.
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.