Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

5. The melting points of two alloys used in formulating solder were investigated

ID: 3335066 • Letter: 5

Question

5. The melting points of two alloys used in formulating solder were investigated by melting 21 samples from each alloy. The sample mean and sample standard deviation for Alloy 1 was 1- 420°F and s 1-4°F, and for Alloy 2, they were X2 = 426"F and s2-3°F. Assume samples are melting point for Alloy 1, and let Ha be the mean for Alloy 2, (Formula 5B) (a) Calculate a pooled estimate of the common variance . what are the associated degrees of freedom? Do the data support the claim that Alloy 1 has a lower mean melting point than Alloy 2? Test Ho: 1 -Ha = 0 versus Hai 1 -Ha

Explanation / Answer

Given that,
mean(x)=420
standard deviation , s.d1=4
number(n1)=21
y(mean)=426
standard deviation, s.d2 =3
number(n2)=21
a.
calculate pooled variance s^2= (n1-1*s1^2 + n2-1*s2^2 )/(n1+n2-2)
s^2 = (20*16 + 20*9) / (42- 2 )
s^2 = 12.5

b.
null, Ho: u1 = u2
alternate, alloy 1 has lower mean melting point than alloy 2, H1: u1 < u2
level of significance, = 0.05
from standard normal table,left tailed t /2 =1.684
since our test is left-tailed
reject Ho, if to < -1.684
we use test statistic (t) = (x-y)/sqrt(s^2(1/n1+1/n2))
to=420-426/sqrt((12.5( 1 /21+ 1/21 ))
to=-6/1.091089
to=-5.499091
| to | =5.499091
critical value
the value of |t | with (n1+n2-2) i.e 40 d.f is 1.684
we got |to| = 5.499091 & | t | = 1.684
make decision
hence value of | to | > | t | and here we reject Ho
p-value: left tail - ha : ( p < -5.4991 ) = 0
hence value of p0.05 > 0,here we reject Ho
ANSWERS
---------------
null, Ho: u1 = u2
alternate, H1: u1 < u2
test statistic: -5.499091
critical value: -1.684
decision: reject Ho
p-value: 0

we support that alloy 1 has lower mean melting point than alloy 2

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote