Y X1 X2 X3 X4 88 86 110 100 87 80 62 97 99 100 96 110 107 103 103 76 101 117 93
ID: 3323942 • Letter: Y
Question
Y X1 X2 X3 X4 88 86 110 100 87 80 62 97 99 100 96 110 107 103 103 76 101 117 93 95 80 100 101 95 88 73 78 85 95 84 58 120 77 80 74 116 105 122 116 102 104 112 119 106 105 99 120 89 105 97 64 87 82 90 88 126 133 120 113 108 94 140 121 96 89 71 84 113 98 78 111 106 102 109 109 109 109 129 102 108 100 104 83 100 102 127 150 118 107 110 99 98 125 108 95 82 120 94 95 90 67 74 121 91 85 109 96 114 114 103 78 104 73 93 80 115 94 121 115 104 83 91 129 97 83 *9.18. Refer to Job proficiency Problems 9.10 and 9.11 sing forward stepwise regression, find the best subset of predictor variables to predict job oicienc a. U Se subset according to the Rá., criterion obtained in Problem 9.1la? a, pExplanation / Answer
(a)
Regression Analysis: Y versus X1, X2, X3, X4
Forward Selection of Terms
to enter = 0.05
Analysis of Variance
Model Summary
Coefficients
Regression Equation
-124.20 + 0.2963 X1 + 1.357 X3 + 0.517 X4
(b)
its remains same for best subset fitting and using forward selection method also.
as using forward selection output is given in (a)
and using stepwise only means best fitting given below,
Regression Analysis: Y versus X1, X2, X3, X4
Stepwise Selection of Terms
to enter = 0.05, to remove = 0.1
Analysis of Variance
Model Summary
Coefficients
Regression Equation
Source DF Adj SS Adj MS F-Value P-Value Regression 3 8705.8 2901.93 175.02 0.000 X1 1 763.1 763.12 46.02 0.000 X3 1 1324.4 1324.39 79.87 0.000 X4 1 258.5 258.46 15.59 0.001 Error 21 348.2 16.58 Total 24 9054.0Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.