Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

record Agent Price Size Bedrooms Baths Pool (yes is 1) Garage (Yes is 1) Days To

ID: 3310648 • Letter: R

Question

record Agent Price Size Bedrooms Baths Pool (yes is 1) Garage (Yes is 1) Days Township Mortgage type Years FICO Default (Yes is 1) 1 Marty 206424 1820 2 1.5 1 1 33 2 Fixed 2 824 0 2 Rose 346150 3010 3 2 0 0 36 4 Fixed 9 820 0 3 Carter 372360 3210 4 3 0 1 21 2 Fixed 18 819 0 4 Peterson 310622 3330 3 2.5 1 0 26 3 Fixed 17 817 0 5 Carter 496100 4510 6 4.5 0 1 13 4 Fixed 17 816 0 6 Peterson 294086 3440 4 3 1 1 31 4 Fixed 19 813 0 7 Carter 228810 2630 4 2.5 0 1 39 4 Adjustable 10 813 0 8 Isaacs 384420 4470 5 3.5 0 1 26 2 Fixed 6 812 0 9 Peterson 416120 4040 5 3.5 0 1 26 4 Fixed 3 810 0 10 Isaacs 487494 4380 6 4 1 1 32 3 Fixed 6 808 0 11 Rose 448800 5280 6 4 0 1 35 4 Fixed 8 806 1 12 Peterson 388960 4420 4 3 0 1 50 2 Adjustable 9 805 1 13 Marty 335610 2970 3 2.5 0 1 25 3 Adjustable 9 801 1 14 Rose 276000 2300 2 1.5 0 0 34 1 Fixed 20 798 0 15 Rose 346421 2970 4 3 1 1 17 3 Adjustable 10 795 0 16 Isaacs 453913 3660 6 4 1 1 12 3 Fixed 18 792 0 17 Carter 376146 3290 5 3.5 1 1 28 2 Adjustable 9 792 1 18 Peterson 694430 5900 5 3.5 1 1 36 3 Adjustable 10 788 0 19 Rose 251269 2050 3 2 1 1 38 3 Fixed 16 786 0 20 Rose 547596 4920 6 4.5 1 1 37 5 Fixed 2 785 0 21 Marty 214910 1950 2 1.5 1 0 20 4 Fixed 6 784 0 22 Rose 188799 1950 2 1.5 1 0 52 1 Fixed 10 782 0 23 Carter 459950 4680 4 3 1 1 31 4 Fixed 8 781 0 24 Isaacs 264160 2540 3 2.5 0 1 40 1 Fixed 18 780 0 25 Carter 393557 3180 4 3 1 1 54 1 Fixed 20 776 0 26 Isaacs 478675 4660 5 3.5 1 1 26 5 Adjustable 9 773 0 27 Carter 384020 4220 5 3.5 0 1 23 4 Adjustable 9 772 1 28 Marty 313200 3600 4 3 0 1 31 3 Fixed 19 772 0 29 Isaacs 274482 2990 3 2 1 0 37 3 Fixed 5 769 0 30 Marty 167962 1920 2 1.5 1 1 31 5 Fixed 6 769 0 31 Isaacs 175823 1970 2 1.5 1 0 28 5 Adjustable 9 766 1 32 Isaacs 226498 2520 4 3 1 1 28 3 Fixed 8 763 1 33 Carter 316827 3150 4 3 1 1 22 4 Fixed 2 759 1 34 Carter 189984 1550 2 1.5 1 0 22 2 Fixed 17 758 0 35 Marty 366350 3090 3 2 1 1 23 3 Fixed 5 754 1 36 Isaacs 416160 4080 4 3 0 1 25 4 Fixed 12 753 0 37 Isaacs 308000 3500 4 3 0 1 37 2 Fixed 18 752 0 38 Rose 294357 2620 4 3 1 1 15 4 Fixed 10 751 0 39 Carter 337144 2790 4 3 1 1 19 3 Fixed 15 749 0 40 Peterson 299730 2910 3 2 0 0 31 2 Fixed 13 748 0 41 Rose 445740 4370 4 3 0 1 19 3 Fixed 5 746 0 42 Rose 410592 4200 4 3 1 1 27 1 Adjustable 9 741 1 43 Peterson 667732 5570 5 3.5 1 1 29 5 Fixed 4 740 0 44 Rose 523584 5050 6 4 1 1 19 5 Adjustable 10 739 0 45 Marty 336000 3360 3 2 0 0 32 3 Fixed 6 737 0 46 Marty 202598 2270 3 2 1 0 28 1 Fixed 10 737 0 47 Marty 326695 2830 3 2.5 1 0 30 4 Fixed 8 736 0 48 Rose 321320 2770 3 2 0 1 23 4 Fixed 6 736 0 49 Isaacs 246820 2870 4 3 0 1 27 5 Fixed 13 735 0 50 Isaacs 546084 5910 6 4 1 1 35 5 Adjustable 10 731 0 51 Isaacs 793084 6800 8 5.5 1 1 27 4 Fixed 6 729 0 52 Isaacs 174528 1600 2 1.5 1 0 39 2 Fixed 15 728 0 53 Peterson 392554 3970 4 3 1 1 30 4 Fixed 17 726 0 54 Peterson 263160 3060 3 2 0 1 26 3 Fixed 10 726 0 55 Rose 237120 1900 2 1.5 1 0 14 3 Fixed 18 723 0 56 Carter 225750 2150 2 1.5 1 1 27 2 Fixed 15 715 0 57 Isaacs 848420 7190 6 4 0 1 49 1 Fixed 5 710 0 58 Carter 371956 3110 5 3.5 1 1 29 5 Fixed 8 710 0 59 Carter 404538 3290 5 3.5 1 1 24 2 Fixed 14 707 0 60 Rose 250090 2810 4 3 0 1 18 5 Fixed 11 704 0 61 Peterson 369978 3830 4 2.5 1 1 27 4 Fixed 10 703 0 62 Peterson 209292 1630 2 1.5 1 0 18 3 Fixed 10 701 0 63 Isaacs 190032 1850 2 1.5 1 1 30 4 Adjustable 2 675 0 64 Isaacs 216720 2520 3 2.5 0 0 2 4 Adjustable 5 674 1 65 Marty 323417 3220 4 3 1 1 22 4 Adjustable 2 673 0 66 Isaacs 316210 3070 3 2 0 0 30 1 Adjustable 1 673 0 67 Peterson 226054 2090 2 1.5 1 1 28 1 Adjustable 6 670 0 68 Marty 183920 2090 3 2 0 0 30 2 Adjustable 8 669 1 69 Rose 248400 2300 3 2.5 1 1 50 2 Adjustable 4 667 0 70 Isaacs 466560 5760 5 3.5 0 1 42 4 Adjustable 3 665 0 71 Rose 667212 6110 6 4 1 1 21 3 Adjustable 8 662 1 72 Peterson 362710 4370 4 2.5 0 1 24 1 Adjustable 2 656 0 73 Rose 265440 3160 5 3.5 1 1 22 5 Adjustable 3 653 0 74 Rose 706596 6600 7 5 1 1 40 3 Adjustable 7 652 1 75 Marty 293700 3300 3 2 0 0 14 4 Adjustable 7 647 1 76 Marty 199448 2330 2 1.5 1 1 25 3 Adjustable 5 644 1 77 Carter 369533 4230 4 3 1 1 32 2 Adjustable 2 642 0 78 Marty 230121 2030 2 1.5 1 0 21 2 Adjustable 3 639 0 79 Marty 169000 1690 2 1.5 0 0 20 1 Adjustable 7 639 1 80 Peterson 190291 2040 2 1.5 1 1 31 4 Adjustable 6 631 1 81 Rose 393584 4660 4 3 1 1 34 3 Adjustable 7 630 1 82 Marty 363792 2860 3 2.5 1 1 48 5 Adjustable 3 626 0 83 Carter 360960 3840 6 4.5 0 1 32 2 Adjustable 5 626 1 84 Carter 310877 3180 3 2 1 1 40 1 Adjustable 6 624 1 85 Peterson 919480 7670 8 5.5 1 1 30 4 Adjustable 1 623 0 86 Carter 392904 3400 3 2 1 0 40 2 Adjustable 8 618 1 87 Carter 200928 1840 2 1.5 1 1 36 4 Adjustable 3 618 1 88 Carter 537900 4890 6 4 0 1 23 1 Adjustable 7 614 0 89 Rose 258120 2390 3 2.5 0 1 23 1 Adjustable 6 614 1 90 Carter 558342 6160 6 4 1 1 24 3 Adjustable 7 613 0 91 Marty 302720 3440 4 2.5 0 1 38 3 Adjustable 3 609 1 92 Isaacs 240115 2220 2 1.5 1 0 39 5 Adjustable 1 609 0 93 Carter 793656 6530 7 5 1 1 53 4 Adjustable 3 605 1 94 Peterson 218862 1930 2 1.5 1 0 58 4 Adjustable 1 604 0 95 Peterson 383081 3510 3 2 1 1 27 2 Adjustable 6 601 1 96 Marty 351520 3380 3 2 0 1 35 2 Adjustable 8 599 1 97 Peterson 841491 7030 6 4 1 1 50 4 Adjustable 8 596 1 98 Marty 336300 2850 3 2.5 0 0 28 1 Adjustable 6 595 1 99 Isaacs 312863 3750 6 4 1 1 12 4 Adjustable 2 595 0 100 Carter 275033 3060 3 2 1 1 27 3 Adjustable 3 593 0 101 Peterson 229990 2110 2 1.5 0 0 37 3 Adjustable 6 591 1 102 Isaacs 195257 2130 2 1.5 1 0 11 5 Adjustable 8 591 1 103 Marty 194238 1650 2 1.5 1 1 30 2 Adjustable 7 590 1 104 Peterson 348528 2740 4 3 1 1 27 5 Adjustable 3 584 1 105 Peterson 241920 2240 2 1.5 0 1 34 5 Adjustable 8 583 1 Adam Marty's Suspicion Adam Marty, the newest hire at North Valley Real Estate, was assigned twenty homes to market and show. When he was hired, North Valley assured him that the twenty homes would be fairly assigned to him. However Adam feels he is not being assigned good homes. He has to work really hard to sell his homes for a decent price and get some commission. Adam knows in his gut that he is being discriminated against. All other agents are friends with each other. He has often found them changing the topic or stopping discussion when he enters the coffee area at the office Adam did not want to complain to the general manager without proof. So he downloaded the sales data (found in Real Estate.xlsx file). He googled and found that the average) function can give him the mean value of numbers. He used the average function on the prices of all 105 homes sold and found that the average selling price was S357,026. Then he used the same function on the 20 homes he sold and found the average seling price to be $270,896 "I knew it", he exclaimed. But Adam remembers that he slept through his statistics class in college, and going to the general manager with wrong evidence would make him look stupid. So he calls you and askts for help. He wants to find statistical evidence that discrimination is taking place in assigning homes to agents. You meet over a cup of coffee and review the data. You realize that ANOVA followed by pairwise comparison of means would be a good method to see if there are any differences between the homes assigned to agents. To do your analysis you must answer the following questions: What variable to do the ANOVA analysis on? » What should be the type I error probability (alpha)?

Explanation / Answer

To compare if the houses assign to Marty are similar to that of others, variables that define the house(house attributes) shall be compared, i.e., size, avg bedroom size, etc. Since the price of a house is outcome of these variables + ability of an agent to sell, it shouldn't be compared directly.

Null hypothesis(H0): there is no difference in size of the house assign to all agents

Alternative hypothesis(H1): mean of house sizes are different for different agents

Choosing higher alpha means more chances of rejecting true null hypothesis. considering consequence of that are not very serious and will only lead to further investigation, we can choose alpha = 0.1. Also we want to minimize type II error

Using these:

with P value of 0.08, we reject the null hypothesis. That is, there is a significant difference in size(less for marty) of the houses assign

Carter                      3,586 Isaacs                      3,656 Marty                      2,633 Peterson                      3,706 Rose                      3,571