Moe’s Southwest Grill and Postmates.com Assignment You have been asked to evalua
ID: 3309409 • Letter: M
Question
Moe’s Southwest Grill and Postmates.com
Assignment
You have been asked to evaluate the program and make suggestions.
Please address the following questions. Put the answers to the following questions into a one to two page report.
a) What is the average total delivery time?
b) The company’s goal is to have 95% of all orders delivered within 26 minutes. Conduct the appropriate statistical test to see if you think this is possible.
c) Does it take significantly more time for delivery on weekends than weekdays?
Day Time Assemble Wait Deliver Distance 5 4 14.86 3.08 6.02 2.5 5 5 14.84 13.81 5.47 3.3 5 6 15.41 9.91 8.99 4.9 5 7 16.34 2.08 7.98 3.8 5 8 15.19 2.69 9.01 4.9 5 9 16.32 0.29 10.86 5.3 5 10 15.32 4.12 6.31 2.9 5 11 14.06 0.27 7.87 3.5 6 4 15.6 11.35 12.47 6.4 6 5 15.16 11.98 7.58 3.5 6 6 14.37 0.36 10.65 5.1 6 7 14.24 1.21 7.83 3.7 6 8 16.17 4.32 6.75 3.6 6 9 15.48 1.54 9.59 5.2 6 10 14.56 0.13 6.99 3.4 6 11 11.65 2.67 8.94 4.8 7 4 15.6 0.78 8.38 3.7 7 5 15.65 0.84 5.62 2.4 7 6 16.59 3.36 5.67 3.1 7 7 14.51 6.05 9.18 4.4 7 8 14.8 1.14 5.04 2.2 7 9 17.02 1.35 8.16 3.8 7 10 12.89 0.2 6.81 3.5 7 11 14.53 1.25 3.71 1.7 1 4 15.01 0.8 6.44 2.5 1 5 13.5 5.47 7.98 4.1 1 6 14.61 9.74 5.85 2 1 7 15.48 0.58 4.72 1.9 1 8 15.99 0.44 7 3.6 1 9 13.87 0.06 8.52 3.6 1 10 14.71 1.21 8.48 3.9 1 11 13.22 0.3 6.61 3.3 2 4 14.45 0.04 8.98 4.4 2 5 14.77 6.8 7.93 3.9 2 6 12.93 0.66 10.31 4.8 2 7 16.18 13 4.86 2.1 2 8 14.99 1.37 8.9 4.7 2 9 14.13 3.51 8.78 4.6 2 10 17.02 2.27 6.27 3.3 2 11 15.51 0.16 8.83 3.7 3 4 14.74 0.51 7.54 3.6 3 5 15.59 0.88 10.49 5.8 3 6 15.46 0.54 8.33 4.2 3 7 15.3 2.55 7.76 3.6 3 8 14.52 1.31 8.88 4 3 9 15.27 1.28 7.17 4 3 10 14.65 0.4 8.98 4.4 3 11 15.58 0.13 7.06 3.8 4 4 15.69 0.21 9.86 4.9 4 5 16.54 2.16 5.71 2.8 4 6 13.81 0.1 7.12 4 4 7 15.74 1.26 6.08 3.1 4 8 13.68 0.7 7.91 4 4 9 15.54 0.32 6.05 3.3 4 10 14.15 2.18 5.91 2.7 4 11 14.13 1.19 7.53 4.1 5 4 15.07 0.69 6.31 3.3 5 5 16.05 2.44 7.37 3.9 5 6 12.63 3.42 4.27 2.1 5 7 14.8 3.04 7.87 4.4 5 8 14.84 0.37 7.11 3.8 5 9 16.27 2.77 7.28 3.5 5 10 15.14 1.51 9.83 4.8 5 11 14.12 3.04 6.28 2.9 6 4 13.97 4.17 5.83 3 6 5 16.27 1.27 5.5 2.9 6 6 13.45 2.49 8.89 4.3 6 7 14.98 4.46 7.08 3.8 6 8 15.36 0.28 5.57 2.8 6 9 12.56 2.46 7.83 4.4 6 10 14.1 4.16 7.74 3.4 6 11 16.06 4.41 11.29 5.3 7 4 14.64 0.44 8.72 3.9 7 5 16.24 10.5 6.31 3.5 7 6 16.16 0.92 9.69 4.9 7 7 15.98 6.42 10.02 4.9 7 8 15.55 0.52 11.41 5.7 7 9 12.95 1.15 5.87 2.9 7 10 14.07 0.67 6.64 3.2 7 11 14.15 0.4 9.65 5.2 1 4 14.71 0.2 10.88 5 1 5 15.46 6.67 6.43 3.2 1 6 14.06 2.12 6.71 2.9 1 7 14.25 0.83 4.12 2.2 1 8 13.81 0.63 8.88 4.6 1 9 15.28 3.77 5.86 2.7 1 10 12.99 1.92 10.74 6.1 1 11 15.58 0.94 5.83 2.4 2 4 14.35 0.85 8.25 3.4 2 5 14.32 1.61 6.93 3.8 2 6 13.34 0.58 7.81 3.9 2 7 16.49 5.07 9.33 5 2 8 16.49 0.99 6.04 3.2 2 9 15.96 0.17 5.6 3 2 10 15.98 0.02 7.04 3.2 2 11 15.71 0.21 9.41 4.9 3 4 15.35 1.63 10.93 5.1 3 5 13.15 6.96 8.14 4.1 3 6 14.97 1.48 6.46 3.2 3 7 14.13 4.83 7.79 3.9 3 8 16 0.55 7.06 3.1 3 9 12.49 0.14 4.27 2.3 3 10 14.19 0.72 8.87 4.5 3 11 15.33 0.2 10.19 4.9 4 4 16.53 1.18 8.14 4.8 4 5 14.18 0.82 7.91 4.5 4 6 15.68 0.04 8.28 4.7 4 7 15.64 0.2 4.85 2.5 4 8 14.34 1.43 8.02 3.7 4 9 15.01 0.6 9.36 5.6 4 10 15.72 0.19 8.52 3.8 4 11 14.68 0.44 7.35 2.7 5 4 14.88 11.11 7.59 4 5 5 15.42 1.7 8.33 3.8 5 6 15.73 1.02 11.22 5.9 5 7 15.09 2.12 5.97 2.6 5 8 15.45 0.52 8.28 4.2 5 9 15.24 1.75 6.63 3 5 10 13.52 8.82 9.56 4.9 5 11 14.29 8.07 6.7 3.8 6 4 16.48 1.49 5.83 2.6 6 5 14.82 8.81 6.02 3 6 6 15.64 4.68 6.47 2.6 6 7 13.96 2.72 8.16 4.3 6 8 16.03 3.11 6.55 3.9 6 9 16.81 13.32 7.17 3.4 6 10 15.69 1.5 8.62 4.3 6 11 15.91 3.94 8.81 4.2 7 4 13.58 0.11 9.62 4.6 7 5 14.85 0.18 9.39 4.6 7 6 14.55 2.36 4.88 2.5 7 7 14.59 0.27 9.21 4.7 7 8 14.39 1.22 5.18 2 7 9 14.52 1.43 9.17 4.7 7 10 16.18 0.86 7.78 4.3 7 11 14.52 0.97 10.49 5.1 1 4 15.6 1.02 4.91 2.4 1 5 14.08 0.25 8.54 4.3 1 6 17.43 11.38 4.07 1.2 1 7 13.92 1.07 5.88 3.7 1 8 15.07 0.17 7.09 3.5 1 9 14.26 1.97 5.8 2.6 1 10 15.19 0.19 7.03 3.4 1 11 14.69 1.01 7.94 3.9 2 4 15.18 1.04 8.45 4 2 5 16.06 6.78 6.59 2.8 2 6 12.81 1.33 10.75 5.4 2 7 14.33 2.43 8.68 3.6 2 8 15.27 0.49 6.05 3 2 9 12.96 0.44 8.3 4.2 2 10 14.93 1.04 8.53 3.7 2 11 15.28 0.03 5.96 2.7 3 4 16.25 0.9 8.2 3.2 3 5 16 0.32 5.67 3.2 3 6 14.44 2.38 8.85 4.6 3 7 14.13 0.07 9.02 4.5 3 8 15.78 0.41 6.65 3.5 3 9 13.69 0.47 10.36 5.1 3 10 16.05 0.71 7.9 4.4 3 11 14.42 0.65 8.51 4.3 4 4 14.78 0.28 7.73 4.1 4 5 16.26 0.66 9.24 4.3 4 6 16.7 0.85 9.91 5.1 4 7 14.37 0.58 5.85 2.4 4 8 15.87 0.5 4.68 3.1 4 9 14.85 0.07 8.47 4.6 4 10 14.8 0.63 9.02 4.9 4 11 16.48 0.38 10.57 5.2 5 4 13.14 4.02 10.71 5.2 5 5 13.54 4.01 3.52 1.9 5 6 15.01 1.83 10.56 5.8 5 7 13.67 0.63 5.09 2.7 5 8 16.49 3.63 8.47 4.2 5 9 14.94 0.96 6.81 3.4 5 10 14.86 4.99 10.84 5.5 5 11 14.01 7.64 6.47 3.4 6 4 13.73 0.48 7.33 3.5 6 5 14.89 5.65 8.82 4.6 6 6 15.84 0.74 9.34 4.3 6 7 15.99 8.32 8.24 3.9 6 8 16.17 1.75 7.54 4.1 6 9 15.64 15.15 9.43 5.2 6 10 14.13 0.14 11.21 5.5 6 11 14.62 11.19 10.67 5.9 7 4 16.83 0.23 7.7 3.7 7 5 15.44 10.14 6.37 2.8 7 6 13.27 1.86 8.14 3.7 7 7 16.43 2.13 8.22 3.8 7 8 15.55 0.18 9.41 4 7 9 14.47 3.32 6.62 3.1 7 10 15.09 0.49 4.83 3 7 11 16.57 0.04 6.55 3.2 1 4 13.95 1.46 3.12 1.7 1 5 13.98 1.01 7.19 3.3 1 6 13.76 4.56 9.39 5 1 7 16.48 1.31 6.9 2.9 1 8 15.78 2.18 8.29 3.7 1 9 14.42 0.24 11.85 5.8 1 10 15.76 4.19 8.83 4.6 1 11 13.87 0.08 3.92 2.3 2 4 16.45 0.16 12.25 5.5 2 5 13.58 1 9.9 5.3 2 6 13.25 8.7 8.68 4.1 2 7 16.02 0.88 8.97 4 2 8 13.75 0.22 9.56 4.7 2 9 14.4 1.14 8.65 4.6 2 10 13.85 0.39 10.49 5.3 2 11 13.5 0.16 6.87 3 3 4 15.34 0.7 4.86 2.5 3 5 16.79 0.94 11.14 6.1 3 6 15.46 0.66 8.76 4.6 3 7 14.42 6.14 9.41 4.4 3 8 14.65 3.31 3.93 2.5 3 9 14.76 2 9.98 4.2 3 10 13.6 1.91 6.32 3.3 3 11 14.24 1.19 9.4 4.5 4 4 15.7 1.77 6.54 3.3 4 5 15.51 4.83 8.45 4.2 4 6 14.05 0.68 5.3 2.5 4 7 15.6 3.5 6.96 3.6 4 8 15.54 1.73 6.88 2.9 4 9 13.49 1.29 8.22 4.7 4 10 15.46 1.49 8.06 4.1 4 11 15.58 0.31 12.55 6.4 5 4 14.06 1.33 9 4.7 5 5 15.53 2.2 8.25 4.1 5 6 15.94 2.27 12.58 6.4 5 7 15.08 8.31 9.63 5 5 8 15.46 1.61 10.42 5 5 9 15.73 3.45 7.69 3.8 5 10 15.21 7.22 7.88 4 5 11 13.3 3.57 7.43 3.6 6 4 14.14 5.94 6.56 3.1 6 5 14.59 1.1 4.72 2.9 6 6 15.77 2.14 8.58 4.9 6 7 12.64 8.2 8.83 5.1 6 8 16.69 21.66 7.65 4 6 9 16.82 0.72 12.43 5.4 6 10 16.71 2.08 6.09 2.7 6 11 14.2 5.28 7.79 4 Day - 1 is Monday, 2 is Tuesday….7 is Sunday Time - the hour the order came in (between 4 and 11pm) Assemble - time in minutes to assemble the order by Moe's cooks Wait - time in minutes from end of assembly to when Postmates delivery person arrived Deliver - time in minutes from pick up of order to when it arrives at customer's location Distance - miles between Moe's and customer's locationExplanation / Answer
a) What is the average total delivery time?
Answer:
The average total delivery time is given as 7.84 minutes approximately.
Deliver
Mean
7.841458333
Standard Error
0.122371028
Median
7.905
Mode
6.31
Standard Deviation
1.895763819
Sample Variance
3.593920459
Kurtosis
-0.23449713
Skewness
0.072401564
Range
9.46
Minimum
3.12
Maximum
12.58
Sum
1881.95
Count
240
b) The company’s goal is to have 95% of all orders delivered within 26 minutes. Conduct the appropriate statistical test to see if you think this is possible.
Here, we have to use one sample t test for the population. The null and alternative hypothesis for this test is given as below:
Null hypothesis: H0: Average delivery time for orders is 26 minutes.
Alternative hypothesis: Ha: Average delivery time for orders is less than 26 minutes. (all orders delivered within 26 minutes.)
H0: µ = 26 versus Ha: µ < 26
This is a one tailed test. This is a lower tailed or left tailed test.
Test statistic formula is given as below:
Test statistic = t = (Xbar - µ) / [S/sqrt(n)]
We are given
Xbar = 7.84
S = 1.8958
n = 240
df = n – 1 = 240 – 1 = 239
c = 95% = 0.95
= 1 – c = 1 – 0.95 = 0.05
t = (7.84 – 26)/[1.8958/sqrt(240)]
t = -148.3983
P-value = 0.00 (by using t-table or excel)
P-value < = 0.05
So, we reject the null hypothesis that Average delivery time for orders is 26 minutes.
There is sufficient evidence to conclude that Average delivery time for orders is less than 26 minutes. (all orders delivered within 26 minutes.)
c) Does it take significantly more time for delivery on weekends than weekdays?
Here, we have to use two sample t test for the population mean.
Null hypothesis: H0: There is no significant difference in the average delivery time on weekdays and weekends.
Alternative hypothesis: Ha: There is a significant difference in the average delivery time on weekdays and weekends.
H0: µweekday = µweekend versus Ha: µweekday µweekend
This is a two tailed test.
We assume level of significance as = 0.05
For the given data, we have
Group Statistics
Day
N
Mean
Std. Deviation
Std. Error Mean
Delivery time in minutes
Weekends
72
7.8865
1.90978
.22507
Weekday
168
7.8221
1.89513
.14621
The test statistic formula is given as below:
t = (X1bar – X2bar) / sqrt[Sp2*((1/n1)+(1/n2))]
Where Sp2 is pooled variance
Sp2 = [(n1 – 1)*S1^2 + (n2 – 1)*S2^2]/(n1 + n2 – 2)
Sp2 = [(72 – 1)*1.90978^2 + (168 – 1)*1.89513^2]/(72 + 168 – 2)
Sp2 = 3.6081
SE = sqrt[Sp2*((1/n1)+(1/n2))]
SE = sqrt[3.6081*((1/72)+(1/168))]
SE = 0.2676
(X1bar – X2bar) = 7.8865 - 7.8221 = 0.0644
t = (X1bar – X2bar) / sqrt[Sp2*((1/n1)+(1/n2))]
t = 0.0644/0.2676
t = 0.24066
Lower critical value = -1.97
Upper critical value = 1.97
P-value = 0.81
= 0.05
P-value > = 0.05
So, we do not reject the null hypothesis that there is no significant difference in the average delivery time on weekdays and weekends.
There is sufficient evidence to conclude that the average delivery time on weekdays and weekends are same.
Deliver
Mean
7.841458333
Standard Error
0.122371028
Median
7.905
Mode
6.31
Standard Deviation
1.895763819
Sample Variance
3.593920459
Kurtosis
-0.23449713
Skewness
0.072401564
Range
9.46
Minimum
3.12
Maximum
12.58
Sum
1881.95
Count
240
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.