Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

https://docs.google.com/spreadsheets/d/1JsbmShmOZUJlMTOmQccPU5_JckC5QpoVyYjXwJQ_

ID: 3301542 • Letter: H

Question

https://docs.google.com/spreadsheets/d/1JsbmShmOZUJlMTOmQccPU5_JckC5QpoVyYjXwJQ_OSs/edit?usp=sharing.

THE INFORMATION IS HERE_____PLEASE PLEASE Please copy and paste the above link

YOU NEED TO WORK OUT THE DATA PROBLEMs /statistical analysis using these 4 methods:

1) Wilson method to calculate 95% CIs around these estimates

2)the Chi-Square test for categorical variables,

3) t test for continuous variables,

4)ANOVA for multiple groups, regression analysis

thank you! it won't let me upload image...too large of a table i think but please copy and paste link excel sheet will open up

Explanation / Answer

Since the TB and ART results are available on the sample size and we know the population TB size, we fill first build a linear regression model on the ART as a function of TB. Then, using this fitted regression model, we make prediction for the number of ART's on the population TB count. Data is missing on 36 countries and they will be deleted. The three columns from your shared spreadsheet copied are columns C, D, and G. The R program below gives the desired result:

> tt <- read.csv("clipboard",header = TRUE,sep=" ")
> tt2 <- na.omit(tt)
> names(tt2)
[1] "TB"     "ART"    "TB_Pop"
> View(tt2)
> artlm <- lm(ART~TB,data=tt2)
> summary(artlm)

Call:
lm(formula = ART ~ TB, data = tt2)

Residuals:
    Min      1Q Median      3Q     Max
-55.144 -12.257   5.359 18.725 24.433

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept) 75.50959    5.49283 13.747   <2e-16 ***
TB           0.05766    0.06769   0.852    0.396  
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 20.98 on 121 degrees of freedom
Multiple R-squared: 0.005961,   Adjusted R-squared: -0.002254
F-statistic: 0.7256 on 1 and 121 DF, p-value: 0.396

> predict(artlm,newdata=data.frame(TB=tt2$TB_Pop))
           1            2            3            4            5            6
3592.69537    107.22192     75.79788     75.68257     75.91320    709.75621
           7            8            9           10           11           12
   144.70013    156.23189    112.98780    467.58932     79.60336 20947.98912
          13           14           15           16           17           18
    75.50959    375.33526    138.93425     80.69888    456.05756     75.50959
          19           20           21           22           23           24
   144.70013    825.07377    536.77986     75.50959     89.34770    173.52952
          25           26           27           28           29           30
   882.73255    117.02391   2900.78997    179.29540   1171.02647   1286.34404
          31           32           33           34           35           36
   248.48594 53006.27259    375.33526    100.30287    940.39134     91.07746
          37           38           39           40           41           42
1113.36769     75.62491    106.06874   2151.22579    107.79851    121.63662
          43           44           45           46           47           48
    75.85554     79.66102    107.22192   8205.39802 14490.20540     95.11358
          49           50           51           52           53           54
   271.54945     75.97086    438.75992    825.07377    161.99776 11088.33719
          55           56           57           58           59           60
   101.45604     93.38381    381.10114     78.56551    277.31533    306.14472
          61           62           63           64           65           66
   450.29168   2612.49605     75.85554     80.52590    317.67648    473.35519
          67           68           69           70           71           72
   116.44733   1286.34404    277.31533    128.55567 163826.45395 58887.46848
          73           74           75           76           77           78
   825.07377    998.05012     95.11358     93.96040    277.31533   1286.34404
          79           80           81           82           83           84
   106.06874    998.05012   6244.99939    111.25804    125.09614    767.41499
          85           86           87           88           89           90
   121.63662    118.75368   1055.70890    882.73255     77.46999   3362.06023
          91           92           93           94           95           96
1978.24944   1632.29674     86.46476     77.64296    323.44236     91.65405
          97           98           99          100          101          102
    83.00523     83.00523     75.50959   2208.88457   8954.96221 11434.28988
         103          104          105          106          107          108
   767.41499     76.20150   2612.49605    132.01520     95.11358   1171.02647
         109          110          111          112          113          114
33863.55656     77.35467     94.53699     97.41993     76.43213    190.82716
         115          116          117          118          119          120
1978.24944   2208.88457    490.65283    213.89067    119.33027   2381.86092
         121          122          123
   432.99405    998.05012   6706.26966
>