The \'alpha\' values that populate Table A-10 are probabilities. They correspond
ID: 3298060 • Letter: T
Question
The 'alpha' values that populate Table A-10 are probabilities. They correspond to 'z' values on the x/y axes of the table. The 'z' values of standard deviation correspond requirement for the 'alpha' probability.
If it is required that only 1 in 10,000 parts fail to conform to a specification (i.e, a 0.0001 probability), what is the standard deviation requirement, expressed to three significant figures.
(Hints: (1) use the continued Table A-10 - turn the page!!!, (2) the continued table only goes to two significant figures, so add a significant figure in your answer.
..ooo AT&T; 03:40 137% Tabelas%20Shigley-appA%20201 1.2.pdf graduacao.mecanica.ufrj.br 01 0.02 0.3 0.04 o.os 0.06 0.07 0.08 0.09 Z 0.00 0. 00 0.5000 04960 0 4920 0,4880 04840 04801 0,4761 04721 04681 0464 01 0.4602 04562 0.4522 04483 04443 04404 04364 04325 0 4286 04247 02 04207 04168 04129 0.4090 04052 04013 0.3974 0.336 0.3897 03859 0.3 0.3821 0.3783 0.3745 0.3707 03669 0.3632 0.3594 03557 0.3520 03483 04 03446 0340 03372 03336 03300 03264 03238 0 3192 0 3156 0 312 05 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 2843 02810 02776 06 02743 02709 0.2676 02643 0.2611 02578 0.2546 0.2514 02483 02451 07 0.2420 02389 0.2358 0.2327 0.2296 0.2266 02236 02206 02177 02148 8 0.2119 02090 0.20 02033 02005 01977 0.1949 01922 0.1894 1867 09 0.1841 0.1814 0.1788 0.1762 0.1736 01711 0.1685 0.1660 0.1635 01611 10 0.1587 01562 0.1539 5 0.1492 0 169 0.1446 0.1423 0.1401 01379 11 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 12 0.1151 0.1131 01112 0.1093 01075 0.1056 0.1038 0.1020 0.1003 00985 13 0.0968 0.0951 00934 0.0918 0.0901 0.0885 00B69 0.0853 00838 0.0823 14 00808 00793 00778 00764 00749 00735 00721 00708 0004 00681 15 0.0668 00655 00643 00630 00618 0.0606 00594 00582 00571 0 0559 600548 00537 00526 00516 0.0505 00495 00485 00475 00465 00455 17 0.0446 00436 00427 00418 0.0409 00401 0.0392 00384 00375 0 0367 19 0.0287 00281 0.0274 0.0268 0.0262 00256 0.0250 00244 00239 0.0233 20 00228 00222 00217 00212 0 0207 0.0202 0019700192 00188 00183 2.1 0.0179 00174 0.0170 00166 0.0162 00158 00154 00150 00146 00143 22 00139 00136 00132 00129 00125 00122 00119 00116 00113 00110 2.3 00107 00104 0.0102 000990 0.00964 0.00939 0.00914 000889 000866 0.00842 24 000820 000798 000776 0.00755 000734 000714 000695 000676 000657 0 00639 25 0.00621 000604 0.00587 0.00570 000554 0.00539 0.00523 0.00508 0.00494 0.00480 26 000466 000453 0.00440 0.00427 000415 0.00402 000391 0.00379 000368 00035 27 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264 28 0.00256 000248 000240 000233 000226 0.00219 000212 000205 0,00199 0 00193 29 0.00187 0.00181 0.00175 000169 0.00164 000159 0.00154 000149 0.00144 0 00139 continued G o o o o o 20Explanation / Answer
Ans:
Given that only 1 in 10,000 parts fail to conform to a specification (i.e, a 0.0001 probability),means that
P(Z>z)=0.0001
P(Z<=z)=1-0.0001=0.9999
z=3.719
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.